Skip to main content

Advertisement

Log in

TGF-beta specifically enhances the metastatic attributes of murine lung adenocarcinoma: implications for human non-small cell lung cancer

  • Research Paper
  • Published:
Clinical & Experimental Metastasis Aims and scope Submit manuscript

Abstract

Lung cancer is the most frequent and one of the most deadly cancer types and is classified into small cell lung cancer and non-small cell lung cancer (NSCLC). Transforming growth factor beta (TGFβ) regulates a wide array of cell functions and plays a major role in lung diseases, including NSCLC. TGFβ signals through the complex of TGFβ type I and type II receptors, triggering Smad and non-Smad signaling pathways such as PI3K/Akt and MEK1/ERK. We investigated the role of TGFβ1 on the progression of the murine lung adenocarcinoma cell line LP07. Furthermore, we undertook a retrospective study with tissue samples from stage I and II NSCLC patients to assess the clinical pathologic role and prognostic significance of TβRI expression. We demonstrated that although lung cancer cell monolayers responded to TGFβ1 anti-mitogenic effects and TGFβ1 pulse (24 h treatment) delayed tumor growth at primary site; a switch towards malignant progression upon TGFβ1 treatment was observed at the metastatic site. In our model, TGFβ1 modulated in vitro clonogenicity, protected against stress-induced apoptosis and increased adhesion, spreading, lung retention and metastatic outgrowth. PI3K and MEK1 signaling pathways were involved in TGFβ1-mediated metastasis stimulation. Several of these TGFβ responses were also observed in human NSCLC cell lines. In addition, we found that a higher expression of TβRI in human lung tumors is associated with poor patient’s overall survival by univariate analysis, while multivariate analysis did not reach statistical significance. Although additional detailed analysis of the endogenous signaling in vivo and in vitro is needed, these studies may provide novel molecular targets for the treatment of lung cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

NSCLC:

Non-small cell lung cancer

TGFβ:

Transforming growth factor beta

SCC:

Squamous cell carcinoma

ADC:

Adenocarcinoma

TβRI:

TGFβ type I receptor

TβRII:

TGFβ type II receptor

EMT:

Epithelial to mesenchymal transition

FAK:

Focal adhesion kinase

References

  1. Loria DLAJ, Guerra Yí ME, Galán Álvarez Y, Barrios Herrera E, Alonso Barbeito R, Abriata G, Fernández Garrote LM (2010) Tendencia de la mortalidad por cáncer en Argentina, Cuba y Uruguay en un período de 15 años. Revista Cubana de Salud Pública 36(2):115–125

    Article  Google Scholar 

  2. Travis WDBE, Muller-Hermelink HK, Harris CC (2004) World Health Organization Classification of Tumours. Pathology and Genetics of Tumours of the Lung, Pleura, Thymus and Heart. IARC Press, Lyon

    Google Scholar 

  3. Santibanez JF, Quintanilla M, Bernabeu C (2011) TGF-beta/TGF-beta receptor system and its role in physiological and pathological conditions. Clin Sci (Lond) 121(6):233–251. doi:10.1042/CS20110086

    Article  CAS  Google Scholar 

  4. Shi Y, Massague J (2003) Mechanisms of TGF-beta signaling from cell membrane to the nucleus. Cell 113(6):685–700

    Article  PubMed  CAS  Google Scholar 

  5. Kang JS, Liu C, Derynck R (2009) New regulatory mechanisms of TGF-beta receptor function. Trends Cell Biol 19(8):385–394. doi:10.1016/j.tcb.2009.05.008

    Article  PubMed  CAS  Google Scholar 

  6. Zhang YE (2009) Non-Smad pathways in TGF-beta signaling. Cell Res 19(1):128–139. doi:10.1038/cr.2008.328

    Article  PubMed  CAS  Google Scholar 

  7. Bhowmick NA, Ghiassi M, Bakin A, Aakre M, Lundquist CA, Engel ME, Arteaga CL, Moses HL (2001) Transforming growth factor-beta1 mediates epithelial to mesenchymal transdifferentiation through a RhoA-dependent mechanism. Mol Biol Cell 12(1):27–36

    Article  PubMed  CAS  Google Scholar 

  8. Argast GM, Krueger JS, Thomson S, Sujka-Kwok I, Carey K, Silva S, O’Connor M, Mercado P, Mulford IJ, Young GD, Sennello R, Wild R, Pachter JA, Kan JL, Haley J, Rosenfeld-Franklin M, Epstein DM (2011) Inducible expression of TGFbeta, snail and Zeb1 recapitulates EMT in vitro and in vivo in a NSCLC model. Clin Exp Metastasis 28(7):593–614. doi:10.1007/s10585-011-9394-8

    Article  PubMed  CAS  Google Scholar 

  9. Teixeira AL, Araujo A, Coelho A, Ribeiro R, Gomes M, Pereira C, Medeiros R (2011) Influence of TGFB1+869T>C functional polymorphism in non-small cell lung cancer (NSCLC) risk. J Cancer Res Clin Oncol 137(3):435–439. doi:10.1007/s00432-010-0896-6

    Article  PubMed  CAS  Google Scholar 

  10. Minamiya Y, Miura M, Hinai Y, Saito H, Ito M, Ono T, Toda H, Motoyama S, Ogawa J (2010) Transforming growth factor-beta1 29T>C genetic polymorphism is associated with lymph node metastasis in patients with adenocarcinoma of the lung. Tumour Biol 31(5):437–441. doi:10.1007/s13277-010-0052-6

    Article  PubMed  CAS  Google Scholar 

  11. Barthelemy-Brichant N, David JL, Bosquee L, Bury T, Seidel L, Albert A, Bartsch P, Baugnet-Mahieu L, Deneufbourg JM (2002) Increased TGFbeta1 plasma level in patients with lung cancer: potential mechanisms. Eur J Clin Invest 32(3):193–198

    Article  PubMed  CAS  Google Scholar 

  12. Kumar S, Guleria R, Mohan A, Singh V, Bharti AC, Das BC (2011) Efficacy of plasma TGF-beta1 level in predicting therapeutic efficacy and prognosis in patients with advanced non-small cell lung cancer. Cancer Invest 29(3):202–207. doi:10.3109/07357907.2010.543208

    Article  PubMed  Google Scholar 

  13. Zhao L, Ji W, Zhang L, Ou G, Feng Q, Zhou Z, Lei M, Yang W, Wang L (2010) Changes of circulating transforming growth factor-beta1 level during radiation therapy are correlated with the prognosis of locally advanced non-small cell lung cancer. J Thorac Oncol 5(4):521–525. doi:10.1097/JTO.0b013e3181cbf761

    Article  PubMed  Google Scholar 

  14. Hasegawa Y, Takanashi S, Kanehira Y, Tsushima T, Imai T, Okumura K (2001) Transforming growth factor-beta1 level correlates with angiogenesis, tumor progression, and prognosis in patients with nonsmall cell lung carcinoma. Cancer 91(5):964–971. doi:10.1002/1097-0142(20010301)91

    Article  PubMed  CAS  Google Scholar 

  15. Ortegel JW, Staren ED, Faber LP, Warren WH, Braun DP (2002) Modulation of tumor-infiltrating lymphocyte cytolytic activity against human non-small cell lung cancer. Lung Cancer 36(1):17–25

    Article  PubMed  Google Scholar 

  16. Ito M, Minamiya Y, Kawai H, Saito S, Saito H, Nakagawa T, Imai K, Hirokawa M, Ogawa J (2006) Tumor-derived TGFbeta-1 induces dendritic cell apoptosis in the sentinel lymph node. J Immunol 176(9):5637–5643

    PubMed  CAS  Google Scholar 

  17. Ju S, Qiu H, Zhou X, Zhu B, Lv X, Huang X, Li J, Zhang Y, Liu L, Ge Y, Johnson DE, Shu Y (2009) CD13+CD4+CD25hi regulatory T cells exhibit higher suppressive function and increase with tumor stage in non-small cell lung cancer patients. Cell Cycle 8(16):2578–2585

    Article  PubMed  CAS  Google Scholar 

  18. Nazareth MR, Broderick L, Simpson-Abelson MR, Kelleher RJ Jr, Yokota SJ, Bankert RB (2007) Characterization of human lung tumor-associated fibroblasts and their ability to modulate the activation of tumor-associated T cells. J Immunol 178(9):5552–5562

    PubMed  CAS  Google Scholar 

  19. Navab R, Strumpf D, Bandarchi B, Zhu CQ, Pintilie M, Ramnarine VR, Ibrahimov E, Radulovich N, Leung L, Barczyk M, Panchal D, To C, Yun JJ, Der S, Shepherd FA, Jurisica I, Tsao MS (2011) Prognostic gene-expression signature of carcinoma-associated fibroblasts in non-small cell lung cancer. Proc Natl Acad Sci USA 108(17):7160–7165. doi:10.1073/pnas.1014506108

    Article  PubMed  CAS  Google Scholar 

  20. Wu YY, Peck K, Chang YL, Pan SH, Cheng YF, Lin JC, Yang RB, Hong TM, Yang PC (2011) SCUBE3 is an endogenous TGF-beta receptor ligand and regulates the epithelial-mesenchymal transition in lung cancer. Oncogen 30(34):3682–3693. doi:10.1038/onc.2011.85

    Article  CAS  Google Scholar 

  21. Shintani Y, Okimura A, Sato K, Nakagiri T, Kadota Y, Inoue M, Sawabata N, Minami M, Ikeda N, Kawahara K, Matsumoto T, Matsuura N, Ohta M, Okumura M (2011) Epithelial to mesenchymal transition is a determinant of sensitivity to chemoradiotherapy in non-small cell lung cancer. Ann Thorac Surg 92(5):1794–1804. doi:10.1016/j.athoracsur.2011.07.032 discussion 1804

    Article  PubMed  Google Scholar 

  22. Perrotti D, Cimino L, Ferrari S, Sacchi A (1991) Differential expression of transforming growth factor-beta 1 gene in 3LL metastatic variants. Cancer Res 51(20):5491–5494

    PubMed  CAS  Google Scholar 

  23. Urtreger AJ, Diament MJ, Ranuncolo SM, Del CVM, Puricelli LI, Klein SM, De Kier Joffe ED (2001) New murine cell line derived from a spontaneous lung tumor induces paraneoplastic syndromes. Int J Oncol 18(3):639–647

    PubMed  CAS  Google Scholar 

  24. Diament MJ, Garcia C, Stillitani I, Saavedra VM, Manzur T, Vauthay L, Klein S (1998) Spontaneous murine lung adenocarcinoma (P07): a new experimental model to study paraneoplastic syndromes of lung cancer. Int J Mol Med 2(1):45–50

    PubMed  CAS  Google Scholar 

  25. Larsen JE, Minna JD (2011) Molecular biology of lung cancer: clinical implications. Clin Chest Med 32(4):703–740. doi:10.1016/j.ccm.2011.08.003

    Article  PubMed  Google Scholar 

  26. Drabsch Y, Ten Dijke P (2012) TGF-beta signalling and its role in cancer progression and metastasis. Cancer Metastasis Rev. doi:10.1007/s10555-012-9375-7

    PubMed  Google Scholar 

  27. Miyazono K (2009) Transforming growth factor-beta signaling in epithelial-mesenchymal transition and progression of cancer. Proc Jpn Acad Ser B 85(8):314–323

    Article  CAS  Google Scholar 

  28. Moustakas A, Heldin CH (2009) The regulation of TGFbeta signal transduction. Development 136(22):3699–3714. doi:10.1242/dev.030338

    Article  PubMed  CAS  Google Scholar 

  29. Donovan JC, Rothenstein JM, Slingerland JM (2002) Non-malignant and tumor-derived cells differ in their requirement for p27Kip1 in transforming growth factor-beta-mediated G1 arrest. J Biol Chem 277(44):41686–41692

    Article  PubMed  CAS  Google Scholar 

  30. Huang Y, Hutter D, Liu Y, Wang X, Sheikh MS, Chan AM, Holbrook NJ (2000) Transforming growth factor-beta 1 suppresses serum deprivation-induced death of A549 cells through differential effects on c-Jun and JNK activities. J Biol Chem 275(24):18234–18242

    Article  PubMed  CAS  Google Scholar 

  31. Huang S, Chakrabarty S (1994) Regulation of fibronectin and laminin receptor expression, fibronectin and laminin secretion in human colon cancer cells by transforming growth factor-beta 1. Int J Cancer 57(5):742–746

    Article  PubMed  CAS  Google Scholar 

  32. Xu Z, Shen MX, Ma DZ, Wang LY, Zha XL (2003) TGF-beta1-promoted epithelial-to-mesenchymal transformation and cell adhesion contribute to TGF-beta1-enhanced cell migration in SMMC-7721 cells. Cell Res 13(5):343–350. doi:10.1038/sj.cr.7290179

    Article  PubMed  Google Scholar 

  33. Kim SI, Kwak JH, Na HJ, Kim JK, Ding Y, Choi ME (2009) Transforming growth factor-beta (TGF-beta1) activates TAK1 via TAB 1-mediated autophosphorylation, independent of TGF-beta receptor kinase activity in mesangial cells. J Biol Chem 284(33):22285–22296

    Article  PubMed  CAS  Google Scholar 

  34. Horowitz JC, Rogers DS, Sharma V, Vittal R, White ES, Cui Z, Thannickal VJ (2007) Combinatorial activation of FAK and AKT by transforming growth factor-beta1 confers an anoikis-resistant phenotype to myofibroblasts. Cell Signal 19(4):761–771. doi:10.1016/j.cellsig.2006.10.001

    Article  PubMed  CAS  Google Scholar 

  35. Krueger JS, Keshamouni VG, Atanaskova N, Reddy KB (2001) Temporal and quantitative regulation of mitogen-activated protein kinase (MAPK) modulates cell motility and invasion. Oncogene 20(31):4209–4218. doi:10.1038/sj.onc.1204541

    Article  PubMed  CAS  Google Scholar 

  36. Pirozzi G, Tirino V, Camerlingo R, Franco R, La Rocca A, Liguori E, Martucci N, Paino F, Normanno N, Rocco G (2011) Epithelial to mesenchymal transition by TGFbeta-1 induction increases stemness characteristics in primary non small cell lung cancer cell line. PLoS One 6(6):e21548

    Article  PubMed  CAS  Google Scholar 

  37. Brown KA, Aakre ME, Gorska AE, Price JO, Eltom SE, Pietenpol JA, Moses HL (2004) Induction by transforming growth factor-beta1 of epithelial to mesenchymal transition is a rare event in vitro. Breast Cancer Res 6(3):R215–R231

    Article  PubMed  CAS  Google Scholar 

  38. Wrzesinski SH, Wan YY, Flavell RA (2007) Transforming growth factor-beta and the immune response: implications for anticancer therapy. Clin Cancer Res 13(18 Pt 1):5262–5270. doi:10.1158/1078-0432.CCR-07-1157

    Article  PubMed  CAS  Google Scholar 

  39. Daroqui CM, Ilarregui JM, Rubinstein N, Salatino M, Toscano MA, Vazquez P, Bakin A, Puricelli L, de Kier Bal, Joffe E, Rabinovich GA (2007) Regulation of galectin-1 expression by transforming growth factor beta1 in metastatic mammary adenocarcinoma cells: implications for tumor-immune escape. Cancer Immunol Immunother 56(4):491–499. doi:10.1007/s00262-006-0208-9

    Article  PubMed  CAS  Google Scholar 

  40. Giampieri S, Manning C, Hooper S, Jones L, Hill CS, Sahai E (2009) Localized and reversible TGFbeta signalling switches breast cancer cells from cohesive to single cell motility. Nat Cell Biol 11(11):1287–1296. doi:10.1038/ncb1973

    Article  PubMed  CAS  Google Scholar 

  41. Wen G, Partridge MA, Li B, Hong M, Liao W, Cheng SK, Zhao Y, Calaf GM, Liu T, Zhou J, Zhang Z, Hei TK (2011) TGFBI expression reduces in vitro and in vivo metastatic potential of lung and breast tumor cells. Cancer Lett 308(1):23–32. doi:10.1016/j.canlet.2011.04.010

    Article  PubMed  CAS  Google Scholar 

  42. Welch DR, Fabra A, Nakajima M (1990) Transforming growth factor beta stimulates mammary adenocarcinoma cell invasion and metastatic potential. Proc Natl Acad Sci USA 87(19):7678–7682

    Article  PubMed  CAS  Google Scholar 

  43. Siegel PM, Massague J (2003) Cytostatic and apoptotic actions of TGF-beta in homeostasis and cancer. Nat Rev Cancer 3(11):807–821

    Article  PubMed  CAS  Google Scholar 

  44. Nagaraj NS, Datta PK (2010) Targeting the transforming growth factor-beta signaling pathway in human cancer. Expert Opin Investig Drugs 19(1):77–91. doi:10.1517/13543780903382609

    Article  PubMed  CAS  Google Scholar 

  45. Siegel PM, Shu W, Cardiff RD, Muller WJ, Massague J (2003) Transforming growth factor beta signaling impairs Neu-induced mammary tumorigenesis while promoting pulmonary metastasis. Proc Natl Acad Sci USA 100(14):8430–8435. doi:10.1073/pnas.0932636100

    Article  PubMed  CAS  Google Scholar 

  46. Malkoski SP, Haeger SM, Cleaver TG, Rodriguez KJ, Li H, Lu SL, Feser WJ, Baron AE, Merrick D, Lighthall JG, Ijichi H, Franklin W, Wang XJ (2012) Loss of transforming growth factor beta type II receptor increases aggressive tumor behavior and reduces survival in lung adenocarcinoma and squamous cell carcinoma. Clin Cancer Res 18(8):2173–2183. doi:10.1158/1078-0432.CCR-11-2557

    Article  PubMed  CAS  Google Scholar 

  47. Colasante A, Aiello FB, Brunetti M, di Giovine FS (2003) Gene expression of transforming growth factor beta receptors I and II in non-small-cell lung tumors. Cytokine 24(5):182–189

    Article  PubMed  CAS  Google Scholar 

  48. Zhao J, Liu Z, Li W, Liu X, Chen XF, Zhang HT (2008) Infrequently methylated event at sites -362 to -142 in the promoter of TGF beta R1 gene in non-small cell lung cancer. J Cancer Res Clin Oncol 134(8):919–925. doi:10.1007/s00432-008-0392-4

    Article  PubMed  CAS  Google Scholar 

  49. Takanami I, Tanaka F, Hashizume T, Kodaira S (1997) Roles of the transforming growth factor beta 1 and its type I and II receptors in the development of a pulmonary adenocarcinoma: results of an immunohistochemical study. J Surg Oncol 64(4):262–267. doi:10.1002/(SICI)1096-9098(199704)64

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to María José Carlini.

Additional information

María José Carlini, Lucas Colombo, Elisa Dora Bal de Kier Joffé and Lydia Puricelli are Members of the National Council of Scientific and Technologic Research (CONICET).

Paula Fernanda Vázquez and María José Carlini have contributed equally to this study.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vázquez, P.F., Carlini, M.J., Daroqui, M.C. et al. TGF-beta specifically enhances the metastatic attributes of murine lung adenocarcinoma: implications for human non-small cell lung cancer. Clin Exp Metastasis 30, 993–1007 (2013). https://doi.org/10.1007/s10585-013-9598-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10585-013-9598-1

Keywords

Navigation