Skip to main content

Advertisement

Log in

CD24 promotes tumor cell invasion by suppressing tissue factor pathway inhibitor-2 (TFPI-2) in a c-Src-dependent fashion

  • Research Paper
  • Published:
Clinical & Experimental Metastasis Aims and scope Submit manuscript

Abstract

CD24 is a glycosyl-phosphatidylinositol-anchored protein with mucin-type structure that resides exclusively in membrane microdomains. CD24 is often highly expressed in carcinomas and correlates with poor prognosis. Experimentally, the over-expression or depletion of CD24 alters cell proliferation, adhesion, and invasion in vitro and tumor growth in vivo. However, little is known about the mechanisms by which CD24 mediates these cellular effects. Here we have studied the mechanism of CD24-dependent cell invasion using transient CD24 knock-down or over-expression in human cancer cell lines. We show that CD24 depletion reduced tumor cell invasion and up-regulated expression of Tissue Factor Pathway Inhibitor 2 (TFPI-2), a potent inhibitor of extracellular matrix degradation that can block metastases formation and tumor cell invasion. Over-expression of CD24 in A125 cells resulted in reduced TFPI-2 expression and enhanced invasion. We provide evidence that the activity of c-Src is reduced upon CD24 knock-down. The silencing of c-Src, similar to CD24, was able to enhance TFPI-2 expression and reduce tumor cell invasion. An inverse expression of CD24 and TFPI-2 was observed by immunohistochemical analysis of primary breast cancers (N = 1,174). TFPI-2 expression was highest in CD24 negative samples and lowered with increasing CD24 expression. Patients with a CD24 low/TFPI-2 high phenotype showed significantly better survival compared to CD24 high/TFPI-2 low patients. Our results provide evidence that CD24 can regulate cell invasion via TFPI-2 and suggests a role of c-Src in this process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

BrCa:

Breast carcinoma

mAb:

Monoclonal antibody

GPI:

Glycosyl phosphatidylinositol

GAPDH:

Glycerinaldehyde 3′phosphate-dehydrogenease

TMA:

Tissue microarray

TFPI-2:

Tissue factor pathway inhibitor-2

pAb:

Polyclonal antibody

ECM:

Extracellular matrix

References

  1. Kay R, Rosten PM, Humphries RK (1991) CD24, a signal transducer modulating B cell activation responses, is a very short peptide with a glycosyl phosphatidylinositol membrane anchor. J Immunol 147(4):1412–1416

    PubMed  CAS  Google Scholar 

  2. Kay R, Takei F, Humphries RK (1990) Expression cloning of a cDNA encoding M1/69–J11d heat-stable antigens. J Immunol 145(6):1952–1959

    PubMed  CAS  Google Scholar 

  3. Wenger RH, Ayane M, Bose R et al (1991) The genes for a mouse hematopoietic differentiation marker called the heat-stable antigen. Eur J Immunol 21(4):1039–1046

    Article  PubMed  CAS  Google Scholar 

  4. Kristiansen G, Machado E, Bretz N et al (2010) Molecular and clinical dissection of CD24 antibody specificity by a comprehensive comparative analysis. Lab Invest 90(7):1102–1116

    Article  PubMed  CAS  Google Scholar 

  5. Sammar M, Aigner S, Hubbe M et al (1994) Heat-stable antigen (CD24) as ligand for mouse P-selectin. Int Immunol 6(7):1027–1036

    Article  PubMed  CAS  Google Scholar 

  6. Aigner S, Sthoeger ZM, Fogel M et al (1997) CD24, a mucin-type glycoprotein, is a ligand for P-selectin on human tumor cells. Blood 89(9):3385–3395

    PubMed  CAS  Google Scholar 

  7. Friederichs J, Zeller Y, Hafezi-Moghadam A et al (2000) The CD24/P-selectin binding pathway initiates lung arrest of human A125 adenocarcinoma cells. Cancer Res 60(23):6714–6722

    PubMed  CAS  Google Scholar 

  8. Kristiansen G, Sammar M, Altevogt P (2004) Tumour biological aspects of CD24, a mucin-like adhesion molecule. J Mol Histol 35(3):255–262

    Article  PubMed  CAS  Google Scholar 

  9. Lo HW, Zhu H, Cao X et al (2009) A novel splice variant of GLI1 that promotes glioblastoma cell migration and invasion. Cancer Res 69(17):6790–6798

    Article  PubMed  CAS  Google Scholar 

  10. Cao X, Geradts J, Dewhirst MW et al (2011) Upregulation of VEGF-A and CD24 gene expression by the tGLI1 transcription factor contributes to the aggressive behavior of breast cancer cells. Oncogene. doi:10.1038/onc.2011.219

  11. Aigner S, Ramos CL, Hafezi-Moghadam A et al (1998) CD24 mediates rolling of breast carcinoma cells on P-selectin. Faseb J 12(12):1241–1251

    PubMed  CAS  Google Scholar 

  12. Ahmed MA, Jackson D, Seth R et al (2009) CD24 is upregulated in inflammatory bowel disease and stimulates cell motility and colony formation. Inflamm Bowel Dis 16(5):795–803

    Article  Google Scholar 

  13. Hahne M, Wenger RH, Vestweber D et al (1994) The heat-stable antigen can alter very late antigen 4-mediated adhesion. J Exp Med 179(4):1391–1395

    Article  PubMed  CAS  Google Scholar 

  14. Baumann P, Cremers N, Kroese F et al (2005) CD24 expression causes the acquisition of multiple cellular properties associated with tumor growth and metastasis. Cancer Res 65(23):10783–10793

    Article  PubMed  CAS  Google Scholar 

  15. Senner V, Sturm A, Baur I et al (1999) CD24 promotes invasion of glioma cells in vivo. J Neuropathol Exp Neurol 58(8):795–802

    Article  PubMed  CAS  Google Scholar 

  16. Sagiv E, Starr A, Rozovski U et al (2008) Targeting CD24 for treatment of colorectal and pancreatic cancer by monoclonal antibodies or small interfering RNA. Cancer Res 68(8):2803–2812

    Article  PubMed  CAS  Google Scholar 

  17. Smith SC, Oxford G, Wu Z et al (2006) The metastasis-associated gene CD24 is regulated by Ral GTPase and is a mediator of cell proliferation and survival in human cancer. Cancer Res 66(4):1917–1922

    Article  PubMed  CAS  Google Scholar 

  18. Wang W, Wang X, Peng L et al (2010) CD24-dependent MAPK pathway activation is required for colorectal cancer cell proliferation. Cancer Sci 101(1):112–119

    Article  PubMed  CAS  Google Scholar 

  19. Overdevest JB, Thomas S, Kristiansen G et al (2011) CD24 offers a therapeutic target for control of bladder cancer metastasis based on a requirement for lung colonization. Cancer Res 71(11):3802–3811

    Article  PubMed  CAS  Google Scholar 

  20. Fukushima T, Tezuka T, Shimomura T et al (2007) Silencing of insulin-like growth factor-binding protein-2 in human glioblastoma cells reduces both invasiveness and expression of progression-associated gene CD24. J Biol Chem 282(25):18634–18644

    Article  PubMed  CAS  Google Scholar 

  21. Al-Hajj M, Wicha MS, Benito-Hernandez A et al (2003) Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci U S A 100(7):3983–3988

    Article  PubMed  CAS  Google Scholar 

  22. Woodward WA, Sulman EP (2008) Cancer stem cells: markers or biomarkers? Cancer Metastasis Rev 27(3):459–470

    Article  PubMed  CAS  Google Scholar 

  23. Schabath H, Runz S, Joumaa S et al (2006) CD24 affects CXCR4 function in pre-B lymphocytes and breast carcinoma cells. J Cell Sci 119(Pt 2):314–325

    Article  PubMed  CAS  Google Scholar 

  24. Runz S, Mierke CT, Joumaa S et al (2008) CD24 induces localization of beta1 integrin to lipid raft domains. Biochem Biophys Res Commun 365(1):35–41

    Article  PubMed  CAS  Google Scholar 

  25. Varma R, Mayor S (1998) GPI-anchored proteins are organized in submicron domains at the cell surface. Nature 394(6695):798–801

    Article  PubMed  CAS  Google Scholar 

  26. Simons K, Gerl MJ (2010) Revitalizing membrane rafts: new tools and insights. Nat Rev Mol Cell Biol 11(10):688–699

    Article  PubMed  CAS  Google Scholar 

  27. Ilangumaran S, Arni S, van Echten-Deckert G et al (1999) Microdomain-dependent regulation of Lck and Fyn protein-tyrosine kinases in T lymphocyte plasma membranes. Mol Biol Cell 10(4):891–905

    PubMed  CAS  Google Scholar 

  28. Zarn JA, Zimmermann SM, Pass MK et al (1996) Association of CD24 with the kinase c-fgr in a small cell lung cancer cell line and with the kinase lyn in an erythroleukemia cell line. Biochem Biophys Res Commun 225(2):384–391

    Article  PubMed  CAS  Google Scholar 

  29. Sammar M, Gulbins E, Hilbert K et al (1997) Mouse CD24 as a signaling molecule for integrin-mediated cell binding: functional and physical association with src-kinases. Biochem Biophys Res Commun 234(2):330–334

    Article  PubMed  CAS  Google Scholar 

  30. Stefanova I, Horejsi V, Ansotegui IJ et al (1991) GPI-anchored cell-surface molecules complexed to protein tyrosine kinases. Science 254(5034):1016–1019

    Article  PubMed  CAS  Google Scholar 

  31. Baumann P, Thiele W, Cremers N et al (2011) CD24 interacts with and promotes the activity of c-src within lipid rafts in breast cancer cells, thereby increasing integrin-dependent adhesion. Cell Mol Life Sci. doi:10.1007/s00018-011-0756-9

  32. Konduri SD, Tasiou A, Chandrasekar N et al (2000) Role of tissue factor pathway inhibitor-2 (TFPI-2) in amelanotic melanoma (C-32) invasion. Clin Exp Metastasis 18(4):303–308

    Article  PubMed  CAS  Google Scholar 

  33. Herman MP, Sukhova GK, Kisiel W et al (2001) Tissue factor pathway inhibitor-2 is a novel inhibitor of matrix metalloproteinases with implications for atherosclerosis. J Clin Invest 107(9):1117–1126

    Article  PubMed  CAS  Google Scholar 

  34. Konduri SD, Tasiou A, Chandrasekar N et al (2001) Overexpression of tissue factor pathway inhibitor-2 (TFPI-2), decreases the invasiveness of prostate cancer cells in vitro. Int J Oncol 18(1):127–131

    PubMed  CAS  Google Scholar 

  35. Konduri SD, Rao CN, Chandrasekar N et al (2001) A novel function of tissue factor pathway inhibitor-2 (TFPI-2) in human glioma invasion. Oncogene 20(47):6938–6945

    Article  PubMed  CAS  Google Scholar 

  36. Gaud G, Iochmann S, Guillon-Munos A et al (2009) TFPI-2 silencing increases tumour progression and promotes metalloproteinase 1 and 3 induction through tumour-stromal cell interactions. J Cell Mol Med. doi:10.1111/j.1582-4934.2009.00989.x

  37. Sierko E, Wojtukiewicz MZ, Kisiel W (2007) The role of tissue factor pathway inhibitor-2 in cancer biology. Semin Thromb Hemost 33(7):653–659

    Article  PubMed  CAS  Google Scholar 

  38. Wolterink S, Moldenhauer G, Fogel M et al (2010) Therapeutic antibodies to human L1CAM: functional characterization and application in a mouse model for ovarian carcinoma. Cancer Res 70(6):2504–2515

    Article  PubMed  CAS  Google Scholar 

  39. Jackson D, Waibel R, Weber E et al (1992) CD24, a signal-transducing molecule expressed on human B cells, is a major surface antigen on small cell lung carcinomas. Cancer Res 52(19):5264–5270

    PubMed  CAS  Google Scholar 

  40. Riedle S, Kiefel H, Gast D et al (2009) Nuclear translocation and signalling of L1-CAM in human carcinoma cells requires ADAM10 and presenilin/gamma-secretase activity. Biochem J 420(3):391–402

    Article  PubMed  CAS  Google Scholar 

  41. Gast D, Riedle S, Issa Y et al (2008) The cytoplasmic part of L1-CAM controls growth and gene expression in human tumors that is reversed by therapeutic antibodies. Oncogene 27(9):1281–1289

    Article  PubMed  CAS  Google Scholar 

  42. Runz S, Keller S, Rupp C et al (2007) Malignant ascites-derived exosomes of ovarian carcinoma patients contain CD24 and EpCAM. Gynecol Oncol 107(3):563–571

    Article  PubMed  CAS  Google Scholar 

  43. Theurillat JP, Ingold F, Frei C et al (2007) NY-ESO-1 protein expression in primary breast carcinoma and metastases: correlation with CD8+ T-cell and CD79a+ plasmacytic/B-cell infiltration. Int J Cancer 120(11):2411–2417

    Article  PubMed  CAS  Google Scholar 

  44. Kristiansen G, Rose M, Geisler C et al (2010) Endogenous myoglobin in human breast cancer is a hallmark of luminal cancer phenotype. Br J Cancer 102(12):1736–1745

    Article  PubMed  CAS  Google Scholar 

  45. Iochmann S, Blechet C, Chabot V et al (2009) Transient RNA silencing of tissue factor pathway inhibitor-2 modulates lung cancer cell invasion. Clin Exp Metastasis 26(5):457–467

    Article  PubMed  CAS  Google Scholar 

  46. Zhou Q, Rammohan K, Lin S et al (2003) CD24 is a genetic modifier for risk and progression of multiple sclerosis. Proc Natl Acad Sci U S A 100(25):15041–15046

    Article  PubMed  CAS  Google Scholar 

  47. Fang X, Zheng P, Tang J et al (2010) CD24: from A to Z. Cell Mol Immunol 7(2):100–103

    Article  PubMed  CAS  Google Scholar 

  48. Mierke CT, Bretz N, Altevogt P (2011) Contractile forces contribute to increased GPI-anchored receptor CD24 facilitated cancer cell invasion. J Biol Chem. doi:10.1074/jbc.M111.245183 (in press)

  49. Taniuchi K, Nishimori I, Hollingsworth MA (2011) Intracellular CD24 inhibits cell invasion by posttranscriptional regulation of BART through interaction with G3BP. Cancer Res 71(3):895–905

    Article  PubMed  CAS  Google Scholar 

  50. Kedersha N, Anderson P (2002) Stress granules: sites of mRNA triage that regulate mRNA stability and translatability. Biochem Soc Trans 30(Pt 6):963–969

    PubMed  CAS  Google Scholar 

  51. Zhou C, Cunningham L, Marcus AI et al (2006) Arl2 and Arl3 regulate different microtubule-dependent processes. Mol Biol Cell 17(5):2476–2487

    Article  PubMed  CAS  Google Scholar 

  52. Yeatman TJ (2004) A renaissance for SRC. Nat Rev Cancer 4(6):470–480

    Article  PubMed  CAS  Google Scholar 

  53. Guarino M (2010) Src signaling in cancer invasion. J Cell Physiol 223(1):14–26

    PubMed  CAS  Google Scholar 

  54. Hitosugi T, Sato M, Sasaki K et al (2007) Lipid raft specific knockdown of SRC family kinase activity inhibits cell adhesion and cell cycle progression of breast cancer cells. Cancer Res 67(17):8139–8148

    Article  PubMed  CAS  Google Scholar 

  55. Koppikar P, Choi SH, Egloff AM et al (2008) Combined inhibition of c-Src and epidermal growth factor receptor abrogates growth and invasion of head and neck squamous cell carcinoma. Clin Cancer Res 14(13):4284–4291

    Article  PubMed  CAS  Google Scholar 

  56. Guo H, Lin Y, Zhang H et al (2007) Tissue factor pathway inhibitor-2 was repressed by CpG hypermethylation through inhibition of KLF6 binding in highly invasive breast cancer cells. BMC Mol Biol 8:110

    Article  PubMed  Google Scholar 

  57. Kast C, Wang M, Whiteway M (2003) The ERK/MAPK pathway regulates the activity of the human tissue factor pathway inhibitor-2 promoter. J Biol Chem 278(9):6787–6794

    Article  PubMed  CAS  Google Scholar 

  58. Dauer DJ, Ferraro B, Song L et al (2005) Stat3 regulates genes common to both wound healing and cancer. Oncogene 24(21):3397–3408

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by a grant from the DKFZ-Bayer Schering Alliance to G.M. and P. A. We are thankful to Dr. Walter Kisiel for generously providing TFPI-2 reagents.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Altevogt.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (EPS 14256 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bretz, N., Noske, A., Keller, S. et al. CD24 promotes tumor cell invasion by suppressing tissue factor pathway inhibitor-2 (TFPI-2) in a c-Src-dependent fashion. Clin Exp Metastasis 29, 27–38 (2012). https://doi.org/10.1007/s10585-011-9426-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10585-011-9426-4

Keywords

Navigation