Skip to main content

Advertisement

Log in

The dietary flavonoid apigenin enhances the activities of the anti-metastatic protein CD26 on human colon carcinoma cells

  • Research Paper
  • Published:
Clinical & Experimental Metastasis Aims and scope Submit manuscript

Abstract

There is accumulating evidence that secondary plant metabolites such as flavonoids may have anti-cancer properties, and yet the molecular pathways that lead to alterations in cancer cell behaviour remain unclear. We investigated the possible actions of apigenin, a flavone present in leafy vegetables like parsley, on the levels of CD26 in carcinoma cells. CD26 is a multifunctional cell-surface protein that through its associated dipeptidyl peptidase (DPPIV) and ecto-adenosine deaminase (eADA) enzyme activities is able to suppress pathways involved in tumour metastasis. CD26 is down-regulated in various cancers including colorectal carcinoma. Apigenin substantially up-regulated cell-surface CD26 on HT-29 and HRT-18 human colorectal cancer cells. Levels of CD26 protein, along with its associated DPPIV enzyme activity, capacity to bind eADA, and ability to link cells to fibronectin, were increased with a maximum after 24–48 h. Elevation of CD26 occurred at concentrations that were at least 10-fold less than those shown to affect cell growth, and 100-fold below those that could affect cell viability. Furthermore, the CD26 effect was enhanced when apigenin was paired with chemotherapeutic agents utilized in the treatment of advanced colorectal cancer including irinotecan, 5-fluorouracil and oxaliplatin. For irinotecan, apigenin caused a 4-fold increase in the potency of the drug. These results demonstrate that apigenin can increase the cellular levels of CD26 and its multiple functions, and may oppose the predicted effect of decreased DPPIV and eADA activities on carcinoma cells, which is to facilitate tumour growth and metastasis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

5-FU:

5-Fluorouracil

A-7-O-N:

Apigenin-7-O-neohesperidoside, rhoifolin

ADA:

Adenosine deaminase

ANOVA:

Analysis of variance

BSA:

Bovine serum albumin

CXCL12:

Stromal-derived factor-1, SDF-1α

DMEM:

Dulbecco’s modified Eagles medium

DMSO:

Dimethyl sulfoxide

DPPIV:

Dipeptidyl peptidase IV

eADA:

Ecto-adenosine deaminase

ECM:

Extracellular matrix

EDTA:

Ethylenediamine tetraacetic acid

FAP-α:

Fibroblast activated protein-alpha

FN:

Fibronectin

HIV:

Human immunodeficiency virus

IT:

Irinotecan

MTT:

3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide

NCS:

Newborn calf serum

OX:

Oxaliplatin

PBS:

Phosphate-buffered saline

SDH:

Succinate dehydrogenase

References

  1. Weekes J, Lam AK, Sebesan S et al (2009) Irinotecan therapy and molecular targets in colorectal cancer: a systemic review. World J Gastroenterol 15(29):3597–3602

    Article  PubMed  CAS  Google Scholar 

  2. Simmonds PC (2000) Palliative chemotherapy for advanced colorectal cancer systematic review and meta-analysis. Colorectal Cancer Collaborative Group. BMJ (Clin Res Edn) 321(7260):531–535

    Article  CAS  Google Scholar 

  3. Kohne CH, van Cutsem E, Wils J et al (2005) Phase III study of weekly high-dose infusional fluorouracil plus folinic acid with or without irinotecan in patients with metastatic colorectal cancer: European Organisation for Research and Treatment of Cancer Gastrointestinal Group Study 40986. J Clin Oncol 23(22):4856–4865

    Article  PubMed  Google Scholar 

  4. Pro B, Dang NH (2004) CD26/dipeptidyl peptidase IV and its role in cancer. Histol Histopathol 19(4):1345–1351

    PubMed  CAS  Google Scholar 

  5. Kotackova L, Balaziova E, Sedo A (2009) Expression pattern of dipeptidyl peptidase IV activity and/or structure homologues in cancer. Folia Biol (Praha) 55(3):77–84

    CAS  Google Scholar 

  6. Balis ME (1985) Adenosine deaminase and malignant cells. Ann NY Acad Sci 451:142–149

    Article  PubMed  CAS  Google Scholar 

  7. Havre PA, Abe M, Urasaki Y et al (2008) The role of CD26/dipeptidyl peptidase IV in cancer. Front Biosci 13:1634–1645

    Article  PubMed  CAS  Google Scholar 

  8. De Meester I, Korom S, Van Damme J et al (1999) CD26, let it cut or cut it down. Immunol Today 20(8):367–375

    Article  PubMed  Google Scholar 

  9. Dong RP, Tachibana K, Hegen M et al (1997) Determination of adenosine deaminase binding domain on CD26 and its immunoregulatory effect on T cell activation. J Immunol 159(12):6070–6076

    PubMed  CAS  Google Scholar 

  10. Schrader WP, West CA, Miczek AD et al (1990) Characterization of the adenosine deaminase-adenosine deaminase complexing protein binding reaction. J Biol Chem 265(31):19312–19318

    PubMed  CAS  Google Scholar 

  11. Dinjens WN, van der Boon J, ten Kate J et al (1986) Cell surface adenosine deaminase (ADA) and its complexing protein (ADCP) in human T-lymphoid cells. Adv Exp Med Biol 195(Pt B):407–414

    PubMed  Google Scholar 

  12. Loster K, Zeilinger K, Schuppan D et al (1995) The cysteine-rich region of dipeptidyl peptidase IV (CD 26) is the collagen-binding site. Biochem Biophys Res Commun 217(1):341–348

    Article  PubMed  CAS  Google Scholar 

  13. Bauvois B (1988) A collagen-binding glycoprotein on the surface of mouse fibroblasts is identified as dipeptidyl peptidase IV. Biochem J 252(3):723–731

    PubMed  CAS  Google Scholar 

  14. Hanski C, Huhle T, Gossrau R et al (1988) Direct evidence for the binding of rat liver DPP IV to collagen in vitro. Exp Cell Res 178(1):64–72

    Article  PubMed  CAS  Google Scholar 

  15. Cheng HC, Abdel-Ghany M, Elble RC et al (1998) Lung endothelial dipeptidyl peptidase IV promotes adhesion and metastasis of rat breast cancer cells via tumor cell surface-associated fibronectin. J Biol Chem 273(37):24207–24215

    Article  PubMed  CAS  Google Scholar 

  16. Cheng HC, Abdel-Ghany M, Pauli BU (2003) A novel consensus motif in fibronectin mediates dipeptidyl peptidase IV adhesion and metastasis. J Biol Chem 278(27):24600–24607

    Article  PubMed  CAS  Google Scholar 

  17. Thompson MA, Ohnuma K, Abe M et al (2007) CD26/dipeptidyl peptidase IV as a novel therapeutic target for cancer and immune disorders. Mini Rev Med Chem 7(3):253–273

    Article  PubMed  CAS  Google Scholar 

  18. Liu Z, Christensson M, Forslow A et al (2009) A CD26-controlled cell surface cascade for regulation of T cell motility and chemokine signals. J Immunol 183(6):3616–3624

    Article  PubMed  CAS  Google Scholar 

  19. Matteucci E, Giampietro O (2009) Dipeptidyl peptidase-4 (CD26): knowing the function before inhibiting the enzyme. Curr Med Chem 16(23):2943–2951

    Article  PubMed  CAS  Google Scholar 

  20. Christopherson KW II, Hangoc G, Broxmeyer HE (2002) Cell surface peptidase CD26/dipeptidylpeptidase IV regulates CXCL12/stromal cell-derived factor-1 alpha-mediated chemotaxis of human cord blood CD34+ progenitor cells. J Immunol 169(12):7000–7008

    PubMed  CAS  Google Scholar 

  21. Rosenstock J, Zinman B (2007) Dipeptidyl peptidase-4 inhibitors and the management of type 2 diabetes mellitus. Curr Opin Endocrinol Diabetes Obes 14(2):98–107

    Article  PubMed  CAS  Google Scholar 

  22. Ohtsuki T, Tsuda H, Morimoto C (2000) Good or evil: CD26 and HIV infection. J Dermatol Sci 22(3):152–160

    Article  PubMed  CAS  Google Scholar 

  23. Arscott WT, LaBauve AE, May V et al (2009) Suppression of neuroblastoma growth by dipeptidyl peptidase IV: relevance of chemokine regulation and caspase activation. Oncogene 28(4):479–491

    Article  PubMed  CAS  Google Scholar 

  24. Kikkawa F, Kajiyama H, Shibata K et al (2005) Dipeptidyl peptidase IV in tumor progression. Biochim Biophys Acta 1751(1):45–51

    PubMed  CAS  Google Scholar 

  25. Moehrle MC, Schlagenhauff BE, Klessen C et al (1995) Aminopeptidase M and dipeptidyl peptidase IV activity in epithelial skin tumors: a histochemical study. J Cutan Pathol 22(3):241–247

    Article  PubMed  CAS  Google Scholar 

  26. Wesley UV, McGroarty M, Homoyouni A (2005) Dipeptidyl peptidase inhibits malignant phenotype of prostate cancer cells by blocking basic fibroblast growth factor signaling pathway. Cancer Res 65(4):1325–1334

    Article  PubMed  CAS  Google Scholar 

  27. Tsuji T, Sugahara K, Tsuruda K et al (2004) Clinical and oncologic implications in epigenetic down-regulation of CD26/dipeptidyl peptidase IV in adult T-cell leukemia cells. Int J Hematol 80(3):254–260

    Article  PubMed  CAS  Google Scholar 

  28. Ding YL, Fu QY, Tang SF et al (2009) Effect of stromal cell-derived factor-1 and its receptor CXCR4 on liver metastasis of human colon cancer. Zhonghua Wai Ke Za Zhi 47(3):210–213

    PubMed  Google Scholar 

  29. Ottaiano A, Franco R, Aiello Talamanca A et al (2006) Overexpression of both CXC chemokine receptor 4 and vascular endothelial growth factor proteins predicts early distant relapse in stage II-III colorectal cancer patients. Clin Cancer Res 12(9):2795–2803

    Article  PubMed  CAS  Google Scholar 

  30. Tan EY, Mujoomdar M, Blay J (2004) Adenosine down-regulates the surface expression of dipeptidyl peptidase IV on HT-29 human colorectal carcinoma cells: implications for cancer cell behavior. Am J Pathol 165(1):319–330

    Article  PubMed  CAS  Google Scholar 

  31. Blay J, White TD, Hoskin DW (1997) The extracellular fluid of solid carcinomas contains immunosuppressive concentrations of adenosine. Cancer Res 57(13):2602–2605

    PubMed  CAS  Google Scholar 

  32. Mujoomdar M, Hoskin D, Blay J (2003) Adenosine stimulation of the proliferation of colorectal carcinoma cell lines. Roles of cell density and adenosine metabolism. Biochem Pharmacol 66(9):1737–1747

    Article  PubMed  CAS  Google Scholar 

  33. Woodhouse EC, Amanatullah DF, Schetz JA et al (1998) Adenosine receptor mediates motility in human melanoma cells. Biochem Biophys Res Commun 246(3):888–894

    Article  PubMed  CAS  Google Scholar 

  34. Mujoomdar M, Bennett A, Hoskin D et al (2004) Adenosine stimulation of proliferation of breast carcinoma cell lines: evaluation of the [3H]thymidine assay system and modulatory effects of the cellular microenvironment in vitro. J Cell Physiol 201(3):429–438

    Article  PubMed  CAS  Google Scholar 

  35. Montesinos MC, Desai A, Chen JF et al (2002) Adenosine promotes wound healing and mediates angiogenesis in response to tissue injury via occupancy of A(2A) receptors. Am J Pathol 160(6):2009–2018

    Article  PubMed  CAS  Google Scholar 

  36. Wesley UV, Tiwari S, Houghton AN (2004) Role for dipeptidyl peptidase IV in tumor suppression of human non small cell lung carcinoma cells. Int J Cancer 109(6):855–866

    Article  PubMed  CAS  Google Scholar 

  37. Kajiyama H, Kikkawa F, Suzuki T et al (2002) Prolonged survival and decreased invasive activity attributable to dipeptidyl peptidase IV overexpression in ovarian carcinoma. Cancer Res 62(10):2753–2757

    PubMed  CAS  Google Scholar 

  38. Wesley UV, Albino AP, Tiwari S et al (1999) A role for dipeptidyl peptidase IV in suppressing the malignant phenotype of melanocytic cells. J Exp Med 190(3):311–322

    Article  PubMed  CAS  Google Scholar 

  39. Gordaliza M (2007) Natural products as leads to anticancer drugs. Clin Transl Oncol 9(12):767–776

    Article  PubMed  CAS  Google Scholar 

  40. Vainio H, Weiderpass E (2006) Fruit and vegetables in cancer prevention. Nutr Cancer 54(1):111–142

    Article  PubMed  CAS  Google Scholar 

  41. Block KI, Koch AC, Mead MN et al (2008) Impact of antioxidant supplementation on chemotherapeutic toxicity: a systematic review of the evidence from randomized controlled trials. Int J Cancer 123(6):1227–1239

    Article  PubMed  CAS  Google Scholar 

  42. Yang CS, Landau JM, Huang MT et al (2001) Inhibition of carcinogenesis by dietary polyphenolic compounds. Annu Rev Nutr 21:381–406

    Article  PubMed  CAS  Google Scholar 

  43. Birt DF, Hendrich S, Wang W (2001) Dietary agents in cancer prevention: flavonoids and isoflavonoids. Pharmacol Ther 90(2–3):157–177

    Article  PubMed  CAS  Google Scholar 

  44. Patel D, Shukla S, Gupta S (2007) Apigenin and cancer chemoprevention: progress, potential and promise (review). Int J Oncol 30(1):233–245

    PubMed  CAS  Google Scholar 

  45. Blay J, Poon AS (1995) Use of cultured permanent lines of intestinal epithelial cells for the assay of okadaic acid in mussel homogenates. Toxicon 33(6):739–746

    Article  PubMed  CAS  Google Scholar 

  46. Tan EY, Richard CL, Zhang H et al (2006) Adenosine downregulates DPPIV on HT-29 colon cancer cells by stimulating protein tyrosine phosphatase(s) and reducing ERK1/2 activity via a novel pathway. Am J Physiol Cell Physiol 291(3):C433–C444

    Article  PubMed  CAS  Google Scholar 

  47. Schrader WP, Stacy AR (1979) Immunoassay of the adenosine deaminase complexing proteins of human tissues and body fluids. J Biol Chem 254(23):11958–11963

    PubMed  CAS  Google Scholar 

  48. Banerjee S, Li Y, Wang Z et al (2008) Multi-targeted therapy of cancer by genistein. Cancer Lett 269(2):226–242

    Article  PubMed  CAS  Google Scholar 

  49. Radzikowski C, Wietrzyk J, Grynkiewicz G et al (2004) Genistein: a soy isoflavone revealing a pleiotropic mechanism of action—clinical implications in the treatment and prevention of cancer. Postepy Hig Med Dosw 58:128–139

    Google Scholar 

  50. Benavente-Garcia O, Castillo J (2008) Update on uses and properties of citrus flavonoids: new findings in anticancer, cardiovascular, and anti-inflammatory activity. J Agric Food Chem 56(15):6185–6205

    Article  PubMed  CAS  Google Scholar 

  51. Srivastava JK, Gupta S (2007) Antiproliferative and apoptotic effects of chamomile extract in various human cancer cells. J Agric Food Chem 55(23):9470–9478

    Article  PubMed  CAS  Google Scholar 

  52. Butt MS, Sultan MT (2009) Green tea: nature’s defense against malignancies. Crit Rev Food Sci Nutr 49(5):463–473

    Article  PubMed  CAS  Google Scholar 

  53. Vasquez-Garzon VR, Arellanes-Robledo J, Garcia-Roman R et al (2009) Inhibition of reactive oxygen species and pre-neoplastic lesions by quercetin through an antioxidant defense mechanism. Free Radic Res 43(2):128–137

    Article  PubMed  CAS  Google Scholar 

  54. Brown JM, Giaccia AJ (1998) The unique physiology of solid tumors: opportunities (and problems) for cancer therapy. Cancer Res 58(7):1408–1416

    PubMed  CAS  Google Scholar 

  55. Vaupel P, Kallinowski F, Okunieff P (1989) Blood flow, oxygen and nutrient supply, and metabolic microenvironment of human tumors: a review. Cancer Res 49(23):6449–6465

    PubMed  CAS  Google Scholar 

  56. Gatenby RA, Gillies RJ (2004) Why do cancers have high aerobic glycolysis? Nat Rev Cancer 4(11):891–899

    Article  PubMed  CAS  Google Scholar 

  57. Gatenby RA, Gillies RJ (2007) Glycolysis in cancer: a potential target for therapy. Int J Biochem Cell Biol 39(7–8):1358–1366

    Article  PubMed  CAS  Google Scholar 

  58. Gutierrez G (1991) Cellular energy metabolism during hypoxia. Crit Care Med 19(5):619–626

    Article  PubMed  CAS  Google Scholar 

  59. Olsson RA, Pearson JD (1990) Cardiovascular purinoceptors. Physiol Rev 70(3):761–845

    PubMed  CAS  Google Scholar 

  60. Headrick JP, Willis RJ (1989) 5′-Nucleotidase activity and adenosine formation in stimulated, hypoxic and underperfused rat heart. Biochem J 261(2):541–550

    PubMed  CAS  Google Scholar 

  61. Javle M, Hsueh CT (2009) Updates in gastrointestinal oncology—insights from the 2008 44th annual meeting of the American Society of Clinical Oncology. J Hematol Oncol 2:9

    Article  PubMed  Google Scholar 

  62. Blay J, Lowthers EL, Richard CL, et al (2004) Coordinated regulation of cell-surface proteins associated with metastasis in human colorectal carcinoma cells. In: Proceedings of the sixth conference on signalling in normal and cancer cells, Banff, Alberta

  63. Iyer L, Ratain MJ (1998) Clinical pharmacology of camptothecins. Cancer Chemother Pharmacol 42(Suppl):S31–S43

    Article  PubMed  CAS  Google Scholar 

  64. Meyer H, Bolarinwa A, Wolfram G et al (2006) Bioavailability of apigenin from apiin-rich parsley in humans. Ann Nutr Metab 50(3):167–172

    Article  PubMed  CAS  Google Scholar 

  65. Avallone R, Zanoli P, Puia G et al (2000) Pharmacological profile of apigenin, a flavonoid isolated from Matricaria chamomilla. Biochem Pharmacol 59(11):1387–1394

    Article  PubMed  CAS  Google Scholar 

  66. Day AJ, DuPont MS, Ridley S et al (1998) Deglycosylation of flavonoid and isoflavonoid glycosides by human small intestine and liver beta-glucosidase activity. FEBS Lett 436(1):71–75

    Article  PubMed  CAS  Google Scholar 

  67. Lambert N, Kroon PA, Faulds CB et al (1999) Purification of cytosolic beta-glucosidase from pig liver and its reactivity towards flavonoid glycosides. Biochim Biophys Acta 1435(1–2):110–116

    Article  PubMed  CAS  Google Scholar 

  68. Nemeth K, Plumb GW, Berrin JG et al (2003) Deglycosylation by small intestinal epithelial cell beta-glucosidases is a critical step in the absorption and metabolism of dietary flavonoid glycosides in humans. Eur J Nutr 42(1):29–42

    Article  PubMed  CAS  Google Scholar 

  69. Liu Y, Hu M (2002) Absorption and metabolism of flavonoids in the caco-2 cell culture model and a perused rat intestinal model. Drug Metab Dispos 30(4):370–377

    Article  PubMed  CAS  Google Scholar 

  70. Sun YX, Pedersen EA, Shiozawa Y et al (2008) CD26/dipeptidyl peptidase IV regulates prostate cancer metastasis by degrading SDF-1/CXCL12. Clin Exp Metastasis 25(7):765–776

    Article  PubMed  CAS  Google Scholar 

  71. Lambeir AM, Proost P, Durinx C et al (2001) Kinetic investigation of chemokine truncation by CD26/dipeptidyl peptidase IV reveals a striking selectivity within the chemokine family. J Biol Chem 276(32):29839–29845

    Article  PubMed  CAS  Google Scholar 

  72. Shioda T, Kato H, Ohnishi Y et al (1998) Anti-HIV-1 and chemotactic activities of human stromal cell-derived factor 1alpha (SDF-1alpha) and SDF-1beta are abolished by CD26/dipeptidyl peptidase IV-mediated cleavage. Proc Natl Acad Sci USA 95(11):6331–6336

    Article  PubMed  CAS  Google Scholar 

  73. Teicher BA, Fricker SP (2010) CXCL12 (SDF-1)/CXCR4 pathway in cancer. Clin Cancer Res 16(11):2927–2931

    Article  PubMed  CAS  Google Scholar 

  74. Raman D, Baugher PJ, Thu YM et al (2007) Role of chemokines in tumor growth. Cancer Lett 256(2):137–165

    Article  PubMed  CAS  Google Scholar 

  75. Matsusue R, Kubo H, Hisamori S et al (2009) Hepatic stellate cells promote liver metastasis of colon cancer cells by the action of SDF-1/CXCR4 axis. Ann Surg Oncol 16(9):2645–2653

    Article  PubMed  Google Scholar 

  76. Gorrell MD, Gysbers V, McCaughan GW (2001) CD26: a multifunctional integral membrane and secreted protein of activated lymphocytes. Scand J Immunol 54(3):249–264

    Article  PubMed  CAS  Google Scholar 

  77. Meininger CJ, Schelling ME, Granger HJ (1988) Adenosine and hypoxia stimulate proliferation and migration of endothelial cells. Am J Physiol 255(3 Pt 2):H554–H562

    PubMed  CAS  Google Scholar 

  78. Franzen CA, Amargo E, Todorovic V et al (2009) The chemopreventive bioflavonoid apigenin inhibits prostate cancer cell motility through the focal adhesion kinase/Src signaling mechanism. Cancer Prev Res (Phila Pa) 2(9):830–841

    Article  CAS  Google Scholar 

  79. Lindenmeyer F, Li H, Menashi S et al (2001) Apigenin acts on the tumor cell invasion process and regulates protease production. Nutr Cancer 39(1):139–147

    Article  PubMed  CAS  Google Scholar 

  80. Boege F, Straub T, Kehr A et al (1996) Selected novel flavones inhibit the DNA binding or the DNA religation step of eukaryotic topoisomerase I. J Biol Chem 271(4):2262–2270

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the Canadian Institutes for Health Research (CIHR) and Natural Sciences and Engineering Research Council of Canada (NSERC) awarded to Dr. J. Blay. É.C. Lefort was supported by a CRTP studentship award from the Beatrice Hunter Cancer Research Institute (BHCRI). JB is a Senior Scientist of the BHCRI.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan Blay.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lefort, É.C., Blay, J. The dietary flavonoid apigenin enhances the activities of the anti-metastatic protein CD26 on human colon carcinoma cells. Clin Exp Metastasis 28, 337–349 (2011). https://doi.org/10.1007/s10585-010-9364-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10585-010-9364-6

Keywords

Navigation