Skip to main content

Advertisement

Log in

In vitro metastatic colonization of human ovarian cancer cells to the omentum

  • Research Paper
  • Published:
Clinical & Experimental Metastasis Aims and scope Submit manuscript

Abstract

Despite the potentially crucial contributions of the omentum in the regulation of ovarian cancer metastatic growth, it remains a poorly understood organ. Due to its anatomic location and structural fragility, the omentum presents inherent challenges to mechanism-based in vivo studies. Thus, the availability of an ex vivo omental model would, in part, address some of these difficulties posed. Here we describe a technique for identifying, isolating and maintaining ex vivo cultures of omenta from immune-compromised and -competent mice. Ex vivo culture conditions were developed that maintain tissue viability, architecture, and function for up to 10 days. Further experiments demonstrate that the ex vivo culture conditions allow for the proliferation of ovarian cancer cells in vitro and support a similar pattern of microscopic lesions after either intraperitoneal injection of ovarian cancer cells or co-culture of ovarian cancer cells with the omentum. In agreement with previous studies from our laboratory, histologic evaluation of these specimens found that ovarian cancer cells, as well as other peritoneal cancer cells, preferentially accumulate in, and colonize, omental areas rich in immune cells. We now recognize that these are specific, functional structures referred to as milky spots. In sum, these are foundational studies of a readily accessible model, which is easily manipulated and can be immediately used to study the dynamic process of omental colonization. It is hoped that investigators will use the data herein as a starting point for refinements and modifications which will enable them to tailor the model to the specific needs of the experimental question(s) they wish to pursue.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

H&E:

Hematoxylin and eosin

PBS:

Phosphate buffered saline

CO2 :

Carbon dioxide

FCS:

Fetal calf serum

GFP:

Green fluorescent protein

ITS:

Insulin transferrin and selenium solution

dpi:

Days post injection

References

  1. Jemal A, Siegel R, Ward E et al (2009) Cancer statistics, 2009. CA Cancer J Clin 59(4):225–249

    Article  PubMed  Google Scholar 

  2. Ozols RF, Bookman MA, Connolly DC et al (2004) Focus on epithelial ovarian cancer. Cancer Cell 5(1):19–24

    Article  CAS  PubMed  Google Scholar 

  3. Covens AL (2000) A critique of surgical cytoreduction in advanced ovarian cancer. Gynecol Oncol 78:269–274

    Google Scholar 

  4. Bristow RE, Puri I, Chi DS (2009) Cytoreductive surgery for recurrent ovarian cancer: a meta-analysis. Gynecol Oncol 112(1):265–274

    Article  PubMed  Google Scholar 

  5. Bristow RE, Chi DS (2006) Platinum-based neoadjuvant chemotherapy and interval surgical cytoreduction for advanced ovarian cancer: a meta-analysis. Gynecol Oncol 103(3):1070–1076

    Article  CAS  PubMed  Google Scholar 

  6. Smith SC, Theodorescu D (2009) Learning therapeutic lessons from metastasis suppressor proteins. Nat Rev Cancer 9(4):253–264

    Article  CAS  PubMed  Google Scholar 

  7. Bodenstine TM, Welch DR (2008) Metastasis suppressors and the tumor microenvironment. Cancer Microenviron 1(1):1–11

    Article  PubMed  Google Scholar 

  8. Schwartz PE (1981) Surgical management of ovarian cancer. Arch Surg 116(1):99–106

    CAS  PubMed  Google Scholar 

  9. Buy JN, Moss AA, Ghossain MA et al (1988) Peritoneal implants from ovarian tumors: CT findings. Radiology 169(3):691–694

    CAS  PubMed  Google Scholar 

  10. Wilkosz S, Ireland G, Khwaja N et al (2005) A comparative study of the structure of human and murine greater omentum. Anat Embryol (Berl) 209(3):251–261

    Article  Google Scholar 

  11. Simer PH (1948) The drainage of particulate matter from the peritoneal cavity into the lymph vessels of the diaphragm. Anat Rec 101(3):333–351

    Article  CAS  PubMed  Google Scholar 

  12. Pond CM (2005) Adipose tissue and the immune system. Prostaglandins Leukot Essent Fatty Acids 73(1):17–30

    Article  CAS  PubMed  Google Scholar 

  13. Liebermann-Meffert D (2000) The greater omentum. Anatomy, embryology, and surgical applications. Surg Clin North Am 80(1):275–293 (xii)

    Google Scholar 

  14. Gerber SA, Rybalko VY, Bigelow CE et al (2006) Preferential attachment of peritoneal tumor metastases to omental immune aggregates and possible role of a unique vascular microenvironment in metastatic survival and growth. Am J Pathol 169(5):1739–1752

    Article  CAS  PubMed  Google Scholar 

  15. Kenny HA, Krausz T, Yamada SD et al (2007) Use of a novel 3D culture model to elucidate the role of mesothelial cells, fibroblasts and extra-cellular matrices on adhesion and invasion of ovarian cancer cells to the omentum. Int J Cancer 121(7):1463–1472

    Article  CAS  PubMed  Google Scholar 

  16. Zhang XY, Pettengell R, Nasiri N et al (1999) Characteristics and growth patterns of human peritoneal mesothelial cells: comparison between advanced epithelial ovarian cancer and non-ovarian cancer sources. J Soc Gynecol Investig 6(6):333–340

    Article  CAS  PubMed  Google Scholar 

  17. Stylianou E, Jenner LA, Davies M et al (1990) Isolation, culture and characterization of human peritoneal mesothelial cells. Kidney Int 37(6):1563–1570

    Article  CAS  PubMed  Google Scholar 

  18. Nakanishi M, Hamazaki TS, Komazaki S et al (2007) Pancreatic tissue formation from murine embryonic stem cells in vitro. Differentiation 75(1):1–11

    Article  CAS  PubMed  Google Scholar 

  19. Nakamura M, Katabuchi H, Ohba T et al (1994) Isolation, growth and characteristics of human ovarian surface epithelium. Virchows Arch 424(1):59–67

    Article  CAS  PubMed  Google Scholar 

  20. Murray H (1994) Human omental mesothelial cells: a simple method for isolation and discrimination from endothelial cells. In Vitro Cell Dev Biol 30:145–147

    Article  Google Scholar 

  21. Lai KN, Ho SK, Leung J et al (2001) Increased survival of mesothelial cells from the peritoneum in peritoneal dialysis fluid. Cell Biol Int 25(5):445–450

    Article  CAS  PubMed  Google Scholar 

  22. Hjelle JT, Golinska BT, Waters DC et al (1989) Isolation and propagation in vitro of peritoneal mesothelial cells. Perit Dial Int 9(4):341–347

    CAS  PubMed  Google Scholar 

  23. Fedorko ME, Hirsch JG, Fried B (1971) Studies on transport of macromolecules and small particles across mesothelial cells of the mouse omentum. II. Kinetic features and metabolic requirements. Exp Cell Res 69(2):313–323

    Google Scholar 

  24. Bot J, Whitaker D, Vivian J et al (2003) Culturing mouse peritoneal mesothelial cells. Pathol Res Pract 199(5):341–344

    Article  PubMed  Google Scholar 

  25. Hickson JA, Huo D, Vander Griend DJ et al (2006) The p38 kinases MKK4 and MKK6 suppress metastatic colonization in human ovarian carcinoma. Cancer Res 66(4):2264–2270

    Article  CAS  PubMed  Google Scholar 

  26. Delves PJ, Martin, SJ, Burton DR, Roitt IM (2006) Roitt’s essential immunology. Blackwell, Malden

  27. Lotan T, Hickson J, Souris J, et al. (2008) c-Jun NH2-terminal kinase activating kinase 1/mitogen-activated protein kinase kinase 4-mediated inhibition of SKOV3ip.1 ovarian cancer metastasis involves growth arrest and p21 up-regulation. Cancer Res 68(7):2166–2175

    Google Scholar 

  28. Ranvier H (1874) Du developpement t de l’accroissement des vaisseaux sanguins. Arch Physiol 1:429

    Google Scholar 

  29. Strobel T, Swanson L, Cannistra SA (1997) In vivo inhibition of CD44 limits intra-abdominal spread of a human ovarian cancer xenograft in nude mice: a novel role for CD44 in the process of peritoneal implantation. Cancer Res 57(7):1228–1232

    CAS  PubMed  Google Scholar 

  30. Rieppi M, Vergani V, Gatto C et al (1999) Mesothelial cells induce the motility of human ovarian carcinoma cells. Int J Cancer 80(2):303–307

    Article  CAS  PubMed  Google Scholar 

  31. Ahmed N, Oliva K, Wang Y et al (2003) Downregulation of urokinase plasminogen activator receptor expression inhibits Erk signalling with concomitant suppression of invasiveness due to loss of uPAR-beta1 integrin complex in colon cancer cells. Br J Cancer 89(2):374–384

    Article  CAS  PubMed  Google Scholar 

  32. Recklinghausen FTv (1863) Uber Eiter und Bindegewebskorperchen. Virchow’s Arch 28:157–197

  33. Recklinghausen FTv (1863) Zur Fettresorption. Virchow’s Arch 26:172–208

  34. Mironov VA, Gusev SA, Baradi AF (1979) Mesothelial stomata overlying omental milky spots: scanning electron microscopic study. Cell Tissue Res 201(2):327–330

    Article  CAS  PubMed  Google Scholar 

  35. Sorensen EW, Gerber SA, Sedlacek AL et al. (2009) Omental immune aggregates and tumor metastasis within the peritoneal cavity. Immunol Res 45(2–3):185–194

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank Ms. Jennifer Taylor for her support and assistance in the conducting the intraperitoneal injections and for generously providing the SKOV3ip.1-GFP tagged cells for use in this study. We appreciate the supportive and enthusiastic input of Dr. Karl Matlin and Dr. Jerry Turner of the University of Chicago as we developed work reported herein. We appreciate the superb technical support and assistance of Dr. Lynnette Gerhold of the University of Chicago Optical Imaging Core Facility and Ms. Shirley Bond of the University of Chicago Biological Sciences Division Microscopy Core Facility. This work was made possible by the generous philanthropic support of The University of Chicago Section of Urology and grants from The Department of Defense Ovarian Cancer Research Program (W81XWH-09-0127) and the National Cancer Institute (2R01CA089569-06A2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carrie W. Rinker-Schaeffer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khan, S.M., Funk, H.M., Thiolloy, S. et al. In vitro metastatic colonization of human ovarian cancer cells to the omentum. Clin Exp Metastasis 27, 185–196 (2010). https://doi.org/10.1007/s10585-010-9317-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10585-010-9317-0

Keywords

Navigation