Skip to main content

Advertisement

Log in

P53/MDM2 overexpression in metastatic endometrial cancer: correlation with clinicopathological features and patient outcome

  • Research Paper
  • Published:
Clinical & Experimental Metastasis Aims and scope Submit manuscript

Abstract

Several studies have reported that p53/mdm2 distortions play a pivotal role in the development and progression of various human malignancies. However, the number of reports having evaluated simultaneously the components of the P53-pathway alterations in advanced-stage human endometrial carcinomas (EC) is low. In this study, we examined the expression of P53/MDM2 proteins in primary and metastatic ECs, and analyzed the clinicopathological characteristics as well as the survival outcome of patients in relation to P53/MDM2 overexpression. The study group comprised 36 patients with advanced EC, whose primary and metastatic tumor slides were sufficient for analysis. Immunohistochemical assessment was made by applying anti-human P53 and MDM2 antibodies and a highly sensitive EnVision+/HPR visualization system. Nuclear P53 overexpression was seen in 11 (31%) primary ECs and 12 (33%) metastatic tumors. There was a significant correlation between P53 overexpression (in primary cancers and metastatic tumors) and MDM2 overexpression in metastatic tumors. Nuclear MDM2 overexpression was noted in 42% (15/36) of primary carcinomas and in 47% (17/36) of metastatic tumors. A significant association existed between MDM2 overexpression and histological grading (G1 + G2 versus G3, = 0.043). P53/MDM2 overexpression occurred simultaneously in 7 out of 36 (19%) primary ECs and in 9 out of 36 (25%) metastatic lesions. Concomitant overexpression of these proteins was reported in 7 out of 36 (19%) cases and tended to be higher in tumors showing VSI compared to neoplasms lacking vascular space invasion (= 0.051). P53 overexpression, either in primary ECs (< 0.0001) or metastatic lesions (P < 0.0001), was significantly associated with poor survival in univariate analysis. Moreover, the log-rank test demonstrated that simultaneous P53/MDM2 overexpression was also correlated with decreased length of survival. There was no correlation between MDM2 overexpression and patient survival. Multivariate Cox regression analysis revealed that only P53 overexpression is an independent predictor of survival. In conclusion, our data support the view that patients with P53 overexpression are significantly associated with an unfavorable outcome, whereas MDM2 overexpression is not related to decreased survival length in women operated on for advanced-stage EC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

EC:

Endometrial cancer

G1:

Well-differentiated cancer

G2:

Moderately-differentiated cancer

G3:

Poorly-differentiated cancer

IHC:

Immunohistochemistry

VSI:

Vascular space invasion

References

  1. Vousden KH, Lu X (2002) Live or let die: the cell’s response to p53. Nat Rev Cancer 2:594–604

    Article  CAS  PubMed  Google Scholar 

  2. Balint E, Vousden KH (2001) Activation and activities of the p53 tumor suppressor protein. Br J Cancer 85:1813–1823

    Article  CAS  Google Scholar 

  3. Vogelstein B, Lane D, Levine A (2000) Surfing the p53 network. Nature 16:307–310

    Article  CAS  Google Scholar 

  4. Hesketh R (1997) The oncogene and tumour suppressor gene. FactsBook, 2nd edn. Academic Press, San Diego

    Google Scholar 

  5. Freedman DA, Levine AJ (1999) Regulation of the p53 protein by the MDM2 oncoprotein. Cancer Res 59:1–7

    CAS  PubMed  Google Scholar 

  6. Deb SP (2003) Cell cycle regulatory functions of the human oncoprotein MDM2. Mol Cancer Res 1:1009–1016

    CAS  PubMed  Google Scholar 

  7. Onel K, Cordon-Cardo C (2004) MDM2 and prognosis. Mol Cancer Res 2:1–8

    CAS  PubMed  Google Scholar 

  8. Ambros RA, Sheehan CE, Kallakury B, Ross JS, Malfetano J, Paunovich E, Figge J (1996) MDM2 and p53 protein expression in the histologic subtypes of endometrial carcinoma. Mod Pathol 9:1165–1169

    CAS  PubMed  Google Scholar 

  9. Soslow RA, Shen PU, Chung MH, Isacson C (1998) Distinctive p53 and mdm2 immunohistochemical expression profiles suggest different pathogenetic pathways in poorly differentiated endometrial carcinoma. Int J Gynecol Pathol 17:129–134

    Article  CAS  PubMed  Google Scholar 

  10. Skomedal H, Kristensen GB, Nesland JM, Borresen-Dale A-L, Trope C, Holm R (1999) TP53 alterations in relation to the cell cycle-associated proteins p21, cyclin D1, CDK4, RB, MDM2, and EGFR in cancers of the uterine corpus. J Pathol 187:556–562

    Article  CAS  PubMed  Google Scholar 

  11. Maeda K, Tsuda H, Hashiguchi Y, Yamamoto K, Inoue T, Ishiko O, Ogita S (2002) Relationship between p53 pathway and estrogen receptor status in endometrial cancer. Hum Pathol 33:386–391

    Article  CAS  PubMed  Google Scholar 

  12. Suzuki C, Matsumoto T, Sonoue H, Arakawa A, Furugen Y, Kinoshita K (2003) Prognostic significance of the infiltrative pattern invasion in endometrioid adenocarcinoma of the endometrium. Pathol Int 53:495–500

    Article  PubMed  Google Scholar 

  13. Nenutil R, Smardova J, Pavlova S, Hanzelkova Z, Muller P, Fabian P, Hrstka R, Janotova P, Radina M, Lane DP, Coates PJ, Vojtesek B (2005) Discriminating functional and non-functional p53 in human tumours by p53 and MDM2 immunohistochemistry. J Pathol 207:251–259

    Article  CAS  PubMed  Google Scholar 

  14. Pijnenborg JMA, van de Broek L, de Veen GCD, Roemen GMJM, de Haan J, van Engeland M, Voncken JW, Groothuis PG (2006) TP53 overexpression in recurrent endometrial carcinoma. Gynecol Oncol 100:397–404

    Article  CAS  PubMed  Google Scholar 

  15. World Health Organisation Classification of Tumours (2003) Pathology and genetics of tumours of the breast and female genital organs. Tavassoli FA, Devilee P (eds). IACR Press, Lyon, pp 218–226

  16. Mikuta JJ (1995) Preoperative evaluation and staging of endometrial cancer. Cancer 76(suppl):2041–2043

    Article  CAS  PubMed  Google Scholar 

  17. Semczuk A, Marzec B, Skomra D, Roessner A, Cybulski M, Rechberger T, Schneider-Stock R (2005) Allelic loss at TP53 is not related to p53 protein overexpression in primary human endometrial carcinomas. Oncology 69:317–325

    Article  CAS  PubMed  Google Scholar 

  18. Semczuk A, Skomra D, Jankiewicz K, Adamiak A, Korobowicz E, Rechberger T (2005) The immunohistochemical profile of the primary and metastatic carcinoma of the clitoris: a case report. Arch Gynecol Obstet 273:187–191

    Article  PubMed  Google Scholar 

  19. Hayat MA (2002) Microscopy, immunohistochemistry and antigen retrieval methods. For light and electron microscopy, 1st edn. Kluver Academic/Plenum Publishers, New York

    Google Scholar 

  20. Al Kushi A, Lim P, Coldman A, Huntsman D, Miller D, Gilks CB (2004) Interpretation of p53 immunoreactivity in endometrial carcinoma: establishing a clinically relevant cut-off level. Int J Gynecol Pathol 23:129–137

    Article  Google Scholar 

  21. Kaplan EL, Meier P (1958) Nonparametric observation from incomplete observations. J Am Stat Assoc 53:457–481

    Article  Google Scholar 

  22. Semczuk A, Skomra D, Rybojad P, Jeczen R, Rechberger T (2006) Endometrial carcinoma with pleural metastasis: a case report. Acta Cytol 50:697–700

    PubMed  Google Scholar 

  23. Inoue M, Okayama A, Fujita M, Enomoto T, Sakata M, Tanizawa O, Ueshima H (1994) Clinicopathological characteristics of p53 overexpression in endometrial cancers. Int J Cancer 58:14–19

    Article  CAS  PubMed  Google Scholar 

  24. Hori M, Takechi K, Arai Y, Yomo H, Itabashi M, Shimazaki J, Inagawa S, Hori M (2000) Comparison of macroscopic appearance and estrogen receptor-α regulators after gene alteration in human endometrial cancer. Int J Gynecol Cancer 10:469–476

    Article  PubMed  Google Scholar 

  25. Bokhman JV (1983) Two pathogenetic types of endometrial carcinoma. Gynecol Oncol 15:10–17

    Article  CAS  PubMed  Google Scholar 

  26. Prives C (1998) Signaling to p53: breaking the MDM2-p53 circuit. Cell 95:5–8

    Article  CAS  PubMed  Google Scholar 

  27. Esteller M, Cordon-Cardo C, Corn PG, Meltzer SJ, Pohar KS, Watkins DN, Capella G, Peinado MA, Matias-Giui X, Prat J, Baylin SB, Herman JG (2001) p14ARF silencing by promoter hypermethylation mediates abnormal intracellular localization of MDM2. Cancer Res 61:2816–2821

    CAS  PubMed  Google Scholar 

  28. Moll UM, Petrenko O (2003) The MDM2-p53 interaction. Mol Cancer Res 1:1001–1008

    CAS  PubMed  Google Scholar 

  29. Liang S-H, Clarke MF (2001) Regulation of p53 localization. Eur J Biochem 268:2779–2783

    Article  CAS  PubMed  Google Scholar 

  30. Stommel JM, Marchenko ND, Jimenez GS, Moll UM, Hope TJ, Wahl GM (1999) A leucine-rich nuclear export signal in the p53 tetramerization domain: regulation of subcellular localization and p53 activity by NES masking. EMBO J 18:1660–1672

    Article  CAS  PubMed  Google Scholar 

  31. Wadhwa R, Takano S, Robert M, Yoshida A, Nomura H, Reddel RR, Mitsui Y, Kaul SC (1998) Inactivation of tumor suppressor p53 by Mot-2, a hsp70 family member. J Biol Chem 273:29586–29591

    Article  CAS  PubMed  Google Scholar 

  32. Beham A, Marin MC, Fernandez A, Herrmann J, Brisbay S, Tari AM, Lopez-Berestein G, Lozano G, Sarkiss M, Mcdonnell TJ (1997) Bcl-2 inhibits p53 nuclear import following DNA damage. Oncogene 15:2767–2772

    Article  CAS  PubMed  Google Scholar 

  33. Scotto C, Delphin C, Daloulme JC, Baudier J (1999) Concerted regulation of wild-type p53 nuclear accumulation and activation by S100B and calcium-dependent protein kinase C. Mol Cell Biol 19:7168–7180

    CAS  PubMed  Google Scholar 

  34. Kurman RJ (1995) Blaustein’s pathology of the female genital tract, 4th edn. Springer-Verlag, New York

    Google Scholar 

  35. Gassel AM, Backe J, Krebs S, Schon S, Caffier H, Muller-Hermelink HK (1996) Endometrial carcinoma: immunohistochemically detected proliferation index is a prognosticator of long term outcome. J Clin Pathol 51:25–30

    Article  Google Scholar 

  36. Soong R, Knowles S, Wiliams KE, Hammond IG, Wysocki SJ, Iacopetta BJ (1996) Overexpression of p53 protein is an independent prognostic indicator in human endometrial carcinoma. Br J Cancer 74:562–567

    CAS  PubMed  Google Scholar 

  37. Ito K, Sasano H, Matsunaga G, Sato S, Yajima A, Nasim S, Garret CT (1997) Correlations between p21 expression and clinicopathological findings, p53 gene and protein alterations, and survival in patients with endometrial carcinoma. J Pathol 183:318–324

    Article  CAS  PubMed  Google Scholar 

  38. Salvesen HB, Iversen OE, Akslen LA (1999) Prognostic significance of angiogenesis and Ki-67, p53, and p21 expression: a population-based endometrial carcinoma study. J Clin Oncol 17:1382–1390

    CAS  PubMed  Google Scholar 

  39. Sivridis E, Giatromanolaki A (2001) Prognostic aspects on endometrial hyperplasia and neoplasia. Virchows Arch 439:118–126

    Article  CAS  PubMed  Google Scholar 

  40. Erdem O, Erdem M, Dursun A, Akyol G, Erdem A (2003) Angiogenesis, p53, and bcl-2 expression as prognostic indicators in endometrial cancer: comparison with traditional clinicopathologic variables. Int J Gynecol Pathol 22:254–260

    Article  PubMed  Google Scholar 

  41. Lax SF (2004) Molecular genetic pathways in various types of endometrial carcinoma: from a phenotypical to a molecular-based classification. Virchows Arch 444:213–223

    Article  CAS  PubMed  Google Scholar 

  42. Geisler JP, Geisler HE, Wiemann MC, Zhou Z, Miller GA, Crabtree W (1999) p53 expression as a prognostic indicator of 5-year survival in endometrial cancer. Gynecol Oncol 74:468–471

    Article  CAS  PubMed  Google Scholar 

  43. Coronado PJ, Vidart JA, Lopez-Asenjo JA, Fasero M, Furio-Bacete V, Magrina J, Escudero M (2001) P53 overexpression predicts endometrial carcinoma recurrence better then HER-2/neu overexpression. Eur J Obstet Gynecol Reprod Biol 98:103–108

    Article  CAS  PubMed  Google Scholar 

  44. Gossett DR, Alo P, Bristow RE, Galati M, Kyshtoobayeva A, Fruehauf J, Montz FJ (2004) Inability of immunohistochemistry to predict clinical outcomes of endometrial cancer patients. Int J Gynecol Cancer 14:145–151

    Article  CAS  PubMed  Google Scholar 

  45. Ohkouchi T, Sakuragi N, Watari H, Nomura E, Todo Y, Yamada H, Fujimoto S (2002) Prognostic significance of Bcl-2, p53 overexpresion and lymph node metastasis in surgically staged endometrial carcinoma. Am J Obstet Gynecol 187:353–359

    Article  CAS  PubMed  Google Scholar 

  46. Inoue M (2001) Current molecular aspects of the carcinogenesis of the uterine endometrium. Int J Gynecol Cancer 11:339–348

    Article  CAS  PubMed  Google Scholar 

  47. Gadducci A, Cosio S, Genazzani AR (2006) Old and new perspectives in the pharmacological treatment of advanced or recurrent endometrial cancer: hormonal therapy, chemotherapy and molecularly targeted therapies. Crit Rev Oncol Hematol 58:242–256

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the staff of the Department of Pathology at the Lublin University School of Medicine, Lublin, Poland, for the histopathological assessment of the neoplasms. This study was granted by Lublin University School of Medicine, Lublin, Poland (Dz. St. 326/06 and 326/07 to AS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrzej Semczuk.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jeczen, R., Skomra, D., Cybulski, M. et al. P53/MDM2 overexpression in metastatic endometrial cancer: correlation with clinicopathological features and patient outcome. Clin Exp Metastasis 24, 503–511 (2007). https://doi.org/10.1007/s10585-007-9087-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10585-007-9087-5

Keywords

Navigation