Skip to main content

Advertisement

Log in

Climate Suitability for Stable Malaria Transmission in Zimbabwe Under Different Climate Change Scenarios

  • Published:
Climatic Change Aims and scope Submit manuscript

Abstract

Climate is one factor that determines the potential range of malaria. As such, climate change may work with or against efforts to bring malaria under control. We developed a model of future climate suitability for stable Plasmodium falciparum malaria transmission in Zimbabwe. Current climate suitability for stable malaria transmission was based on the MARA/ARMA model of climatic constraints on the survival and development of the Anopheles vector and the Plasmodium falciparum malaria parasite. We explored potential future geographic distributions of malaria using 16 projections of climate in 2100. The results suggest that, assuming no future human-imposed constraints on malaria transmission, changes in temperature and precipitation could alter the geographic distribution of malaria in Zimbabwe, with previously unsuitable areas of dense human population becoming suitable for transmission. Among all scenarios, the highlands become more suitable for transmission, while the lowveld and areas with low precipitation show varying degrees of change, depending on climate sensitivity and greenhouse gas emission stabilization scenarios, and depending on the general circulation model used. The methods employed can be used within or across other African countries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Albritton, D. L. and Meira Filho, L. G., Coordinating lead authors: 2001, Technical Summary. Working Group 1, Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, UK.

  • Blair Research Institute: 1996, 1996 Annual Report: Epidemiology of Plasmodium falciparum drug resistance in Zimbabwe, Blair Research Institute, Harare, Zimbabwe.

  • Breman, J. G.: 2001, ‘The ears of the hippopotamus: Manifestations, determinants and estimates of the malaria burden’, Am. J. Trop. Med. Hygiene 64(Suppl 1), 1–11.

    Google Scholar 

  • Chan, N. Y., Smith, F., Wilson, T. F., Ebi, K. L., and Smith, A. E.: 1999, ‘An integrated assessment framework for climate change and infectious diseases’, Environ. Health Perspect. 107, 329–337.

    Google Scholar 

  • Craig, M. H., Snow, R. W., and le Sueur, D: 1999, ‘A climate-based distribution model of malaria transmission in sub-Saharan Africa’, Parasitol. Today 15, 105–111.

    Google Scholar 

  • Freeman, T.: 1995, Malaria: Zimbabwe 1995. A Review of the Epidemiology of Malaria Transmission and Distribution in Zimbabwe and the Relationship of Malaria Outbreaks to Preceding Meteorological Conditions, Unpublished document, March 1995.

  • Freeman, T. and Bradley, M.: 1996, ‘Temperature is predictive of severe malaria years in Zimbabwe’, Trans. Royal Soc. Trop. Med. Hyg. 90, 232.

    Article  Google Scholar 

  • Gallup, J. and Sachs, J.: 2001, ‘The economic burden of malaria’, Am. J. Trop. Med. Hygiene 64(Suppl~1), 85–96.

    Google Scholar 

  • Githeko, A. K. and Ndegwa, W.:2001, ‘Predicting malaria epidemics in the Kenyan highlands using climate data: A tool for decision makers’, Global Change Human Health 2, 54–63.

    Google Scholar 

  • Greenwood, B. and Mutabingwa, T.: 2002, ‘Malaria in 2002’, Nature 415, 670–672.

    Article  Google Scholar 

  • Hansen, J., Fung, I., Lacis, A., Rind, D., Lebedell, S., Ruedy, R., Russel, G., and Stone, P.: 1988, ‘Global climate changes as forecast by Goddard Institute for Space Studies three-dimensional model’, J. Geophys. Res. 93, 9341–9364.

    Google Scholar 

  • Henderson-Sellers, A., Dickinson, R. E., Durbridge, T. B., Kennedy, P. J., McGuffie, K., and Pitman, A. J.: 1993, ‘Tropical deforestation: Modeling local to regional-scale climate change’, J. Geophys. Res. 98, 7289–7315.

    Article  Google Scholar 

  • Hutchinson, M. F., Hix, H. A., McMahon, J. P., and Ord, K. D.: 1995, Africa: A Topographic and Climatic Database, Centre for Resource and Environmental Studies, Australian National University.

  • Hulme, M., Doherty, R. M., Ngara, T., New, M. G., and Lister, D.: 2001, ‘African climate change: 1900–2100’, Clim. Res. 17, 145–168.

    Google Scholar 

  • Janssen, M. and Martens, P.: 1997, ‘Modelling malaria as a complex adaptive system’, Artificial Life 3, 213–236.

    Article  Google Scholar 

  • Lindblade, K. A., Walker, E. D., Onapa, A. W., Katungu, J., and Wilson, M. L.: 2000, ‘Land use change alters malaria transmission parameters by modifying temperature in a highland area of Uganda’, Trop. Med. Int. Health 5, 263–274.

    Google Scholar 

  • Lindsay, S. W. and Martens, P.: 1998, ‘Malaria in the African highlands: Past, present and future’, Bull. WHO 76, 33–45.

    Google Scholar 

  • Makono, R. and Sibanda, S.: 1999, ‘Review of the prevalence of malaria in Zimbabwe with specific reference to parasite drug resistance (1984–96)’, Trans. Royal Soc.Trop. Med. Hygiene 93, 449–452.

    Article  Google Scholar 

  • Malaria Foundation International, http://www.malaria.org/zw/countries/zimbabwe.htm. Accessed April 2004.

  • MARA/ARMA: 1998, Towards an Atlas of Malaria Risk in Africa, Durban, South Africa.

  • Martens, P., Kovats, R. S., Nijhof, S., deVries, P., Livermore, M. T. J., Bradley, D. J., Cox, J., and McMichael, A. J.: 1999, ‘Climate change and future populations at risk of malaria’, Global Environ. Change 9, S89–S107.

    Google Scholar 

  • McFarlane, N. A., Boer, N. A., Blanchet, J. P., and Lazare, M.: 1992, ‘The Canadian Climate Centre second generation general circulation model and its equilibrium climate’, J. Clim. 5, 1013– 1077.

    Article  Google Scholar 

  • Mendelsohn, R., Schlesinger, M., and Williams, L.: 2000, ‘Comparing impacts across climate models’, Integrated Assess. 1, 37–48.

    Google Scholar 

  • Reiter, P.: 2001, ‘Climate change and mosquito-borne disease’, Environ. Health Perspect. 109, 41–161.

    Google Scholar 

  • Remme, J., Binka, F., and Nabarro, D.: 2001, ‘Toward a framework and indicators for monitoring Roll Back Malaria’, Am. J. Trop. Med. Hygiene 64(Suppl 1), 1–11.

    Google Scholar 

  • Rogers, D. J. and Randolph, S. E.: 2000, ‘The global spread of malaria in a future, warmer world’, Science 289, 1763–1769.

    Article  Google Scholar 

  • Ropelewski, C. F. and Halpert, M. S.: 1987, ‘Global and regional scale precipitation patterns associated with the El Niño-Southern Oscillation’, Mon. Weather Rev. 115, 1606–1626.

    Google Scholar 

  • Schlesinger, M. E. and Williams, L. J.: 1997, COSMIC—Country Specific Model for Intertemporal Climate, EPRI, Palo Alto, CA.

  • Snow, R. W., Craig, M., Deichmann, U., and Marsh, K.: 1999, ‘Estimating mortality, morbidity, and disability due to malaria among Africa's non-pregnant population, Bull. WHO 77, 624–640.

    Google Scholar 

  • Tanser, F. C., Sharp, B., and le Sueur, D.: 2003, ‘Potential effect of climate change on malaria transmission in Africa’, Lancet 362, 1792–1798.

    Article  Google Scholar 

  • Taylor, P. and Mutambu, S. L.: 1986, ‘A review of the malaria situation in Zimbabwe with special reference to the period 1972–1981’, Trans. Royal Soc. Trop. Med. Hygiene 80, 12–19.

    Google Scholar 

  • Trape, J.: 2001, ‘The public health impact of chloroquine resistance in Africa’, Am. J. Trop. Med. Hygiene 64(Suppl 1), 12–17.

    Google Scholar 

  • Trape, J. F., Quinet, M. C., Nzingoula, S., Senga, P., Tchichelle, F., Carme, B., Candito, D., Mayanda, H., and Zoulani, A.: 1987, ‘Malaria and urbanization in Central Africa: The example of Brazzaville. Part B: Pernicious attacks and mortality’, Trans. Royal Soc. Trop. Med. Hygiene 81(Suppl 2), 34–42.

    Google Scholar 

  • Unganai, L. S.: 1996, ‘Historic and future climatic change in Zimbabwe’, Clim. Res. 6, 137–145.

    Google Scholar 

  • Van Lieshout, M., Kovats, R. S., Livermore, M. T. J., and Martens, P.: 2004, ‘Climate change and malaria: Analysis of the SRES climate and socio-economic scenarios’, Global Environ. Change 14, 87–99.

    Google Scholar 

  • Williams, L., Shaw, D., and Mendelsohn, R.: 1998, ‘Evaluating GCM output with impact models’, Clim. Change 39, 111–133.

    Article  Google Scholar 

  • Wilson, C. A. and Mitchell, J. F. B.: 1987, ‘A doubled CO2 climate sensitivity experiment with a global climate model including a simple ocean’, J. Geophys. Res. 92, 13315–13343.

    Google Scholar 

  • World Health Organization: 2002, The World Health Report 2002: Reducing Risks, Promoting Healthy Life, WHO, Geneva.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kristie L. Ebi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ebi, K.L., Hartman, J., Chan, N. et al. Climate Suitability for Stable Malaria Transmission in Zimbabwe Under Different Climate Change Scenarios. Climatic Change 73, 375–393 (2005). https://doi.org/10.1007/s10584-005-6875-2

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10584-005-6875-2

Keywords

Navigation