Skip to main content

Advertisement

Log in

Mitotic checkpoint defects: en route to cancer and drug resistance

  • Review
  • Published:
Chromosome Research Aims and scope Submit manuscript

Abstract

Loss of mitosis regulation is a common feature of malignant cells that leads to aberrant cell division with inaccurate chromosome segregation. The mitotic checkpoint is responsible for faithful transmission of genetic material to the progeny. Defects in this checkpoint, such as mutations and changes in gene expression, lead to abnormal chromosome content or aneuploidy that may facilitate cancer development. Furthermore, a defective checkpoint response is indicated in the development of drug resistance to microtubule poisons that are used in treatment of various blood and solid cancers for several decades. Mitotic slippage and senescence are important cell fates that occur even with an active mitotic checkpoint and are held responsible for the resistance. However, contradictory findings in both the scenarios of carcinogenesis and drug resistance have aroused questions on whether mitotic checkpoint defects are truly responsible for these dismal outcomes. Here, we discuss the possible contribution of the faulty checkpoint signaling in cancer development and drug resistance, followed by the latest research on this pathway for better outcomes in cancer treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

Not applicable.

Abbreviations

MC:

Mitotic checkpoint

SAC:

Spindle assembly checkpoint

MCC:

Mitotic checkpoint complex

APC/C:

Anaphase-promoting complex/cyclosome

MAD:

Mitotic arrest deficiency protein

BUB:

Budding uninhibited by benzimidazole

BUBR1:

Budding uninhibited by benzimidazole-related 1

CIN:

Chromosomal instabiliy

MTA:

Microtubule targeting agents

CDC20:

Cell division control protein 20

CycB-Cdk1:

Cyclin B and CDk1 complex

AOM:

Azoxymethane

DMBA:

7,12-Dimethylbenz[a]anthracene

ER-beta:

Estrogen receptor-beta

RZZ:

Rod-Zw10-Zwilch

KMN:

Knl1-Mis12-Ndc80 complex

MPS1:

Monopolar spindle protein 1

SASP:

Senescence-associated secretory phenotype

References

  • Allan LA, Camacho Reis M, Ciossani G et al (2020) Cyclin B1 scaffolds MAD1 at the kinetochore corona to activate the mitotic checkpoint. EMBO J 39(12):e103180. https://doi.org/10.15252/embj.2019103180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anderhub SJ, Mak GW, Gurden MD et al (2019) High proliferation rate and a compromised spindle assembly checkpoint confers sensitivity to the MPS1 inhibitor BOS172722 in triple-negative breast cancers. Mol Cancer Ther 18(10):1696–1707

    CAS  PubMed  Google Scholar 

  • Balachandran RS, Heighington CS, Starostina NG, Anderson JW, Owen DL, Vasudevan S, Kipreos ET (2016) The ubiquitin ligase CRL2ZYG11 targets cyclin B1 for degradation in a conserved pathway that facilitates mitotic slippage. J Cell Biol 215(2):151–166

    CAS  PubMed  PubMed Central  Google Scholar 

  • Banerjee T, Nath S, Roychoudhury S (2009) DNA damage induced p53 downregulates Cdc20 by direct binding to its promoter causing chromatin remodeling. Nucleic Acids Res 37:2688–2698

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bargiela-Iparraguirre J, Fernandez-Fuente, Herrera L., Calés C, Sanchez-Perez I. (2016) MAD2 in the spotlight as a cancer therapy regulator 3(2):1–6

  • Bates M, Furlong F, Gallagher MF, Spillane CD, McCann A, O’Toole S, O’Leary JJ (2020) Too MAD or not MAD enough: The duplicitous role of the spindle assembly checkpoint protein MAD2 in cancer. Cancer Lett 469:11–21

  • Bennett A, Sloss O, Topham C, Nelson L, Tighe A, Taylor SS (2016) Inhibition of Bcl-xL sensitizes cells to mitotic blockers, but not mitotic drivers. Open Biol 6

  • Bhattacharjya S, Nath S, Ghose J et al (2013) miR-125b promotes cell death by targeting spindle assembly checkpoint gene MAD1 and modulating mitotic progression. Cell Death Differ 20(3):430–442. https://doi.org/10.1038/cdd.2012.135

    Article  CAS  PubMed  Google Scholar 

  • Bukowska B, Rogalska A, Forma E, Brys M, Marczak A (2016) Why a combination of WP 631 and Epo B is an improvement on the drugs singly—involvement in the cell cycle and mitotic slippage. Asian Pac J Cancer Prev 17:1299–1308

    PubMed  Google Scholar 

  • Byrne T, Nelson L, Beirne JP, Sharpe D, Quinn, McCluggage JE, Glenn Robson TW, Furlong F et al (2018) BRCA1 and MAD2 are coexpressed and are prognostic indicators in tubo-ovarian high-grade serous carcinoma. Int J Gynecol Cancer 28(3):472–478

    PubMed  Google Scholar 

  • Cahill DP et al (1998) Mutations of mitotic checkpoint genes in human cancers. Nature 392:300–303

    CAS  PubMed  Google Scholar 

  • Carmena M et al (2012) The chromosomal passenger complex (CPC): from easy rider to the godfather of mitosis. Nat Rev Mol Cell Biol 13:789–803

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chabalier C, Lamare C, Racca C, Privat M, Valette A, Larminat F (2006) BRCA1 downregulation leads to premature inactivation of spindle checkpoint and confers paclitaxel resistance. Cell Cycle 5(9):1001–1007

    CAS  PubMed  Google Scholar 

  • Chan YW et al (2008) CDK1 inhibitors antagonize the immediate apoptosis triggered by spindle disruption but promote apoptosis following the subsequent rereplication and abnormal mitosis. Cell Cycle 7:1449–1461

    CAS  PubMed  Google Scholar 

  • Cheng B, Crasta K (2017) Consequences of mitotic slippage for antimicrotubule drug therapy. Endocr Relat Cancer 24(9):T97–T106. https://doi.org/10.1530/ERC-17-0147

    Article  CAS  PubMed  Google Scholar 

  • Chiba Y, Sato S, Itamochi H, Yoshino N, Fukagawa D, Kawamura H, Suga Y, Kojima-Chiba A, Muraki Y, Sugai T, Sugiyama T (2017) Inhibition of Aurora kinase a synergistically enhances cytotoxicity in ovarian clear cell carcinoma cell lines induced by cisplatin: a potential treatment strategy. Int J Gynecol Cancer 27(8):1666–1674

    PubMed  Google Scholar 

  • Chun AC, Jin D-Y (2003) Transcriptional regulation of mitotic checkpoint gene MAD1 by p53. J Biol Chem 278:37439–37450

    CAS  PubMed  Google Scholar 

  • Collin P, Nashchekina O, Walker R, Pines J (2013) The spindle assembly checkpoint works like a rheostat rather than a toggle switch. Nat Cell Biol 15:1378–1385

    CAS  PubMed  Google Scholar 

  • Dai W et al (2004) Slippage of mitotic arrest and enhanced tumor development in mice with BubR1 haploinsufficiency. Cancer Res 64:440–445

    CAS  PubMed  Google Scholar 

  • Egawa C, Miyoshi Y, Takamura Y, Taguchi T, Tamaki Y, Noguchi S (2001) Decreased expression of BRCA2 mRNA predicts favorable response to docetaxel in breast cancer. Int J Cancer 95(4):255–259

    CAS  PubMed  Google Scholar 

  • Fu Y, Ye D, Chen H, Lu W, Ye F, Xie X (2007) Weakened spindle checkpoint with reduced BubR1 expression in paclitaxel-resistant ovarian carcinoma cell line SKOV3-TR30. Gynecol Oncol 105:66–73

    CAS  PubMed  Google Scholar 

  • Furlong F, Fitzpatrick P, O'Toole S, Phelan S, McGrogan B, Maguire A, O'Grady A, Gallagher M, Prencipe M, McGoldrick A, McGettigan P, Brennan D, Sheils O, Martin C, Kay WE, O'Leary J, McCann A (2012) Low MAD2 expression levels associate with reduced progression-free survival in patients with high-grade serous epithelial ovarian cancer. J Pathol 226(5):746–755

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gascoigne KE, Taylor SS (2008) Cancer cells display profound intra- and interline variation following prolonged exposure to antimitotic drugs. Cancer Cell 14:111–122

    CAS  PubMed  Google Scholar 

  • Gayyed MF, El-Maqsoud NM, Tawfiek ER, El Gelany SA, Rahman MF (2016) A comprehensive analysis of CDC20 overexpression in common malignant tumors from multiple organs:its correlation with tumor grade and stage. Tumour Biol 37(1):749–762

    CAS  PubMed  Google Scholar 

  • Gemma A et al (2000) Somatic mutation of the hBUB1 mitotic checkpoint gene in primary lung cancer. Genes Chromosom Cancer 29:213–218

    CAS  PubMed  Google Scholar 

  • Giovinazzi S, Bellapu D, Morozov VM, Ishov AM (2013) Targeting mitotic exit with hyperthermia or APC/C inhibition to increase paclitaxel efficacy. Cell Cycle 12:2598–2607

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gordon DJ, Resio B, Pellman D (2012) Causes and consequences of aneuploidy in cancer. Nat Rev Genet 13:189–203

    CAS  PubMed  Google Scholar 

  • Guo Y, Zhang X, Yang M et al (2010) Functional evaluation of missense variations in the human MAD1L1 and MAD2L1 genes and their impact on susceptibility to lung cancer. J Med Genet 47(9):616–622. https://doi.org/10.1136/jmg.2009.074252

    Article  CAS  PubMed  Google Scholar 

  • Habu T, Matsumoto T (2013) p31(comet) inactivates the chemically induced Mad2-dependent spindle assembly checkpoint and leads to resistance to anti-mitotic drugs. Springerplus 2:562

    PubMed  PubMed Central  Google Scholar 

  • Hahn MM, Vreede L, Bemelmans SA et al (2016) Prevalence of germline mutations in the spindle assembly checkpoint gene BUB1B in individuals with early-onset colorectal cancer. Genes Chromosom Cancer 55(11):855–863

    CAS  PubMed  Google Scholar 

  • Hao X, Zhou Z, Ye S, Zhou T, Lu Y, Ma D, Wang S (2010) Effect of Mad2 on paclitaxel-induced cell death in ovarian cancer cells. J Huazhong Univ Sci Technolog Med Sci 30(5):620–625

    CAS  PubMed  Google Scholar 

  • Haschka M, Karbon G, Fava LL, Villunger A (2018) Perturbing mitosis for anti-cancer therapy: is cell death the only answer. EMBO Rep 19:e45440

    PubMed  PubMed Central  Google Scholar 

  • He´ garat N, Rata S, Hochegger H (2016) Bistability of mitotic entry and exit switches during open mitosis in mammalian cells. Bioessays 38:627–643

    Google Scholar 

  • Henriques AC, Ribeiro D, Pedrosa J, Sarmento B, Silva PMA, Bousbaa H (2019) Mitosis inhibitors in anticancer therapy: When blocking the exit becomes a solution. Cancer Lett 440–441:64–81

    PubMed  Google Scholar 

  • Hernando E et al (2001) Molecular analyses of the mitotic checkpoint components hsMAD2, hBUB1 and hBUB3 in human cancer. Int J Cancer 95:223–227

    CAS  PubMed  Google Scholar 

  • Hernando E, Nahlé Z, Juan G, Diaz-Rodriguez E, Alaminos M, Hemann M et al (2004) Rb inactivation promotes genomic instability by uncoupling cell cycle progression from mitotic control. Nature. 430(7001):797–802

    CAS  PubMed  Google Scholar 

  • Holland AJ, Cleveland DW (2012) Losing balance: the origin and impact of aneuploidy in cancer. EMBO Rep 13:501–514

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hoyt MA, Totis L, Roberts BTS (1991) Cerevisiae genes required for cell cycle arrest in response to loss of microtubule function. Cell 66:507–517

    CAS  PubMed  Google Scholar 

  • Huang H, Yang Y, Zhang W, Liu X, Yang G (2020) TTK regulates proliferation and apoptosis of gastric cancer cells through the Akt-mTOR pathway [published online ahead of print, 2020 Jun 12]. FEBS Open Bio 10(8):1542–1549

    CAS  PubMed  PubMed Central  Google Scholar 

  • Imai Y, Shiratori Y, Kato N, Inoue T, Omata M (1999) Mutational inactivation of mitotic checkpoint genes, hsMAD2 and hBUB1, is rare in sporadic digestive tract cancers. Jpn J Cancer Res 90:837–840

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kang J, Chen Y, Zhao Y, Yu H (2007) Autophosphorylationdependent activation of human Mps1 is required for the spindle checkpoint. Proc Natl Acad Sci U S A 104:20232–20237

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kemmler S et al (2009) Mimicking Ndc80 phosphorylation triggers spindle assembly checkpoint signalling. EMBO J 28:1099–1110

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kops GJPL, Gassmann R (2020) Crowning the kinetochore: the fibrous corona in chromosome segregation. Trends Cell Biol 30(8):653–667

    CAS  PubMed  Google Scholar 

  • Kops GJ, Foltz DR, Cleveland DW (2004) Lethality to human cancer cells through massive chromosome loss by inhibition of the mitotic checkpoint. Proc Natl Acad Sci U S A 101:8699–8704 39

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kops GJ, Weaver BA, Cleveland DW (2005) On the road to cancer: aneuploidy and the mitotic checkpoint. Nat Rev Cancer 5:773–785

    CAS  PubMed  Google Scholar 

  • Krupina K, Kleiss C, Awal S, Rodriguez-Hernandez I, Sanz-Moreno V, Sumara I (2017) UBASH3B-mediated silencing of the mitotic checkpoint: therapeutic perspectives in cancer. MolCellOncol. 5(2):e1271494

    Google Scholar 

  • Lee H et al (1999) Mitotic checkpoint inactivation fosters transformation in cells lacking the breast cancer susceptibility gene, Brca2. Mol Cell 4:1–10

    CAS  PubMed  Google Scholar 

  • Lee EA et al (2004) Inactivation of the mitotic checkpoint as a determinant of the efficacy of microtubule-targeted drugs in killing human cancer cells. Mol Cancer Ther 3:661–669

    CAS  PubMed  Google Scholar 

  • Lesage B, Qian J, Bollen M (2011) Spindle checkpoint silencing: PP1 rips the balance. Curr Biol 21:R898–R903

    CAS  PubMed  Google Scholar 

  • Li R, Murray AW (1991) Feedback control of mitosis in budding yeast. Cell 66:519–531

    CAS  PubMed  Google Scholar 

  • Li GQ, Zhang HF (2003) Mad2 and p53 expression profiles in colorectal cancer and its clinical significance. World J Gastroenterol 9(9):1972–1975

    CAS  PubMed  PubMed Central  Google Scholar 

  • London N, Biggins S (2014) Signalling dynamics in the spindle checkpoint response. Nat Rev Mol Cell Biol 15(11):736–747

    CAS  PubMed  PubMed Central  Google Scholar 

  • London N, Ceto S, Ranish, Jeffrey A, Biggins S (2012) Phosphoregulation of Spc105 by Mps1 and PP1 regulates Bub1 localization to kinetochores. Curr Biol 22:900–906

    CAS  PubMed  PubMed Central  Google Scholar 

  • Luo X, Yu H (2008) Protein metamorphosis: the two-state behavior of Mad2. Structure 16:1616–1625

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ma HT, Chan YY, Chen X, On KF, Poon RY (2012) Depletion of p31comet protein promotes sensitivity to antimitotic drugs. J Biol Chem 287:21561–21569

    CAS  PubMed  PubMed Central  Google Scholar 

  • Maeda K, Yoneda M, Nakagawa T et al (2018) Defects in centromeric/pericentromeric histone H2A T120 phosphorylation by hBUB1 cause chromosome missegregation producing multinucleated cells. Genes Cells 23(10):828–838. https://doi.org/10.1111/gtc.12630

    Article  CAS  PubMed  Google Scholar 

  • Mattison CP et al (2007) Mps1 activation loop autophosphorylation enhances kinase activity. J Biol Chem 282:30553–30561

    CAS  PubMed  Google Scholar 

  • Mcdermott N, Meunier A, Mooney B, Nortey G, Hernandez C, Hurley S (2016) Fractionated radiation exposure amplifies the radioresistant nature of prostate cancer cells. Nat Publ Gr (March):1–12

  • McEvoy LM, O’Toole SA, Spillane CD, Martin CM, Gallagher MF, Stordal B et al (2015) Identifying novel hypoxia-associated markers of chemoresistance in ovarian cancer. BMC Cancer 15(1):547

    PubMed  PubMed Central  Google Scholar 

  • McGrogan B, Phelan S, Fitzpatrick P, Maguire A, Prencipe M, Brennan D, Doyle E, O'Grady A, Kay E, Furlong F, McCann A (2014) Spindle assembly checkpoint protein expression correlates with cellular proliferation and shorter time to recurrence in ovarian cancer. Hum Pathol 45(7):1509–1519

    CAS  PubMed  Google Scholar 

  • Miao S, Wu K, Zhang B, Weng Z, Zhu M, Lu Y, Krishna R, Shi YE (2014) Synuclein γ compromises spindle assembly checkpoint and renders resistance to antimicrotubule drugs. Mol Cancer Ther 13(3):699–713

    CAS  PubMed  Google Scholar 

  • Michel ML et al (2001) MAD2 haplo-insufficiency causes premature anaphase and chromosome instability in mammalian cells. Nature 409:355–359

    CAS  PubMed  Google Scholar 

  • Michel L, Benezra R, Diaz-Rodriguez E (2004a) MAD2 dependent mitotic checkpoint defects in tumorigenesis and tumor cell death: a double edged sword. Cell Cycle 3:990–992

    CAS  PubMed  Google Scholar 

  • Michel L et al (2004b) Complete loss of the tumor suppressor MAD2 causes premature cyclin B degradation and mitotic failure in human somatic cells. Proc Natl Acad Sci U S A 101:4459–4464

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mondal G, Sengupta S, Panda CK et al (2007) Overexpression of Cdc20 leads to impairment of the spindle assembly checkpoint and aneuploidization in oral cancer. Carcinogenesis 28:81–92

    CAS  PubMed  Google Scholar 

  • Murray S, Briasoulis E, Linardou H, Bafaloukos D, Papadimitriou C (2012) Taxane resistance in breast cancer: mechanisms, predictive biomarkers and circumvention strategies. Cancer Treat Rev 38(7):890–903

    CAS  PubMed  Google Scholar 

  • Musacchio A (2011) Spindle assembly checkpoint: the third decade. Philos Trans R Soc Lond Ser B Biol Sci 366:3595–3604

    CAS  Google Scholar 

  • Musacchio A (2015) The molecular biology of spindle assembly checkpoint signaling dynamics. Curr Biol 25(20):R1002–R1018

    CAS  PubMed  Google Scholar 

  • Musacchio A, Salmon ED (2007) The spindle-assembly checkpoint in space and time. Nat Rev Mol Cell Biol 8:379–393

    CAS  PubMed  Google Scholar 

  • Nakano Y, Sumi T, Teramae M, Morishita M, Fukuda T, Terada H, Yoshida H, Matsumoto Y, Yasui T, Ishiko O (2012) Expression of the mitotic-arrest deficiency 2 is associated with chemotherapy resistance in ovarian serous adenocarcinoma. Oncol Rep 28(4):1200–1204

    PubMed  Google Scholar 

  • Nascimento AV, Gattacceca F, Singh A, Bousbaa H, Ferreira D, Sarmento B, Amiji MM (2016) Biodistribution and pharmacokinetics of Mad2 siRNA-loaded EGFR-targeted chitosan nanoparticles in cisplatin sensitive and resistant lung cancer models. Nanomedicine (London) 11(7):767–781

    CAS  Google Scholar 

  • Nasmyth K (2002) Science 297:559–565

    CAS  PubMed  Google Scholar 

  • Nicholson JM, Cimini D (2011) How mitotic errors contribute to karyotypic diversity in cancer. Adv Cancer Res 112:43–75

    CAS  PubMed  Google Scholar 

  • Nijenhuis W et al (2013) A TPR domain-containing N-terminal module of MPS1 is required for its kinetochore localization by Aurora B. J Cell Biol 201:217–231

    CAS  PubMed  PubMed Central  Google Scholar 

  • Oliveira RA, Hamilton RS, Pauli A, Davis I, Nasmyth K (2010) Cohesin cleavage and Cdk inhibition trigger formation of daughter nuclei. Nat Cell Biol 12(2):185–192

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pan J, Chen RH (2004) Spindle checkpoint regulates Cdc20p stability in Saccharomyces cerevisiae. Genes Dev 18:1439–1451

    CAS  PubMed  PubMed Central  Google Scholar 

  • Prencipe M et al (2009) Cellular senescence induced by aberrant MAD2 levels impacts on paclitaxel responsiveness in vitro. Br J Cancer 101:1900–1908

    CAS  PubMed  PubMed Central  Google Scholar 

  • Raab M, Sanhaji M, Zhou S, Rödel F, El-Balat A, Becker S, Strebhardt K (2019) Blocking mitotic exit of ovarian cancer cells by pharmaceutical inhibition of the anaphase-promoting complex reduces chromosomal instability. Neoplasia. 21(4):363–375

    CAS  PubMed  PubMed Central  Google Scholar 

  • Richeson KV, Bodrug T, Sackton KL et al (2020) Paradoxical mitotic exit induced by a small molecule inhibitor of APC/CCdc20. Nat Chem Biol 16(5):546–555

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rieder CL, Maiato H (2004) Stuck in division or passing through: what happens when cells cannot satisfy the spindle assembly checkpoint. Dev Cell 7:637–651

    CAS  PubMed  Google Scholar 

  • Rieder CL, Schultz A, Cole R, Sluder G (1994) Anaphase onset in vertebrate somatic cells is controlled by a checkpoint that monitors sister kinetochore attachment to the spindle. J Cell Biol 127:1301–1310

    CAS  PubMed  Google Scholar 

  • Rowinsky EK, Donehower RC (1995) Paclitaxel (taxol). N Engl J Med 332:1004–1014

    CAS  PubMed  Google Scholar 

  • Roy B, Han SJ, Fontan AN, Joglekar AP (2020) The copy-number and varied strengths of MELT motifs in Spc105 balance the strength and responsiveness of the spindle assembly checkpoint. Elife 9:e55096. Published 2020 Jun 1. https://doi.org/10.7554/eLife.55096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Russell P, Hennessy BT, Li J, Carey MS, Bast RC, Freeman T, Venkitaraman AR (2012) Cyclin G1 regulates the outcome of taxane-induced mitotic checkpoint arrest. Oncogene. 31(19):2450–2460

    CAS  PubMed  Google Scholar 

  • Sakurikar N, Eichhorn JM, Alford SE, Chambers TC (2014) Identification of a mitotic death signature in cancer cell lines. Cancer Lett 343:232–238

    CAS  PubMed  Google Scholar 

  • Salmela AL et al (2013) Novel pyrimidine-2,4-diamine derivative suppresses the cell viability and spindle assembly checkpoint activity by targeting Aurora kinases. Carcinogenesis 34:436–445

    CAS  PubMed  Google Scholar 

  • Santaguida S, Amon A (2015) Short- and long-term effects of chromosome mis-segrega- tion and aneuploidy. Nat Rev Mol Cell Biol 16:473–485

    CAS  PubMed  Google Scholar 

  • Santibanez M, Gallardo D, Morales F et al (2013) The MAD1 1673 G → A polymorphism alters the function of the mitotic spindle assembly checkpoint and is associated with a worse response to induction chemotherapy and sensitivity to treatment in patients with advanced epithelial ovarian cancer. Pharmacogenet Genomics 23(4):190–199

    CAS  PubMed  Google Scholar 

  • Sawant AV, Srivastava S, Prassanawar SS, Bhattacharyya B, Panda D (2020) Crocin, a carotenoid, suppresses spindle microtubule dynamics and activates the mitotic checkpoint by binding to tubulin [published correction appears in Biochem Pharmacol 177:113990]. Biochem Pharmacol 2019;163:32–45

  • Schukken KM, Foijer F (2017) CIN and aneuploidy: different concepts, different consequences. Bioessays 40(1). https://doi.org/10.1002/bies.201700147.

  • Schvartzman JM, Duijf PH, Sotillo R et al (2011) Mad2 is a critical mediator of the chromosome instability observed upon Rb and p53 pathway inhibition. Cancer Cell 19:701–714

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shepperd LA et al (2012) Phosphodependent recruitment of Bub1 and Bub3 to Spc7/KNL1 by Mph1 kinase maintains the spindle checkpoint. Curr Biol 22(891–899)

  • Shi J, Zhou Y, Huang HC, Mitchison TJ (2011) Navitoclax (ABT-263) accelerates apoptosis during drug-induced mitotic arrest by antagonizing Bcl-xL. Cancer Res 71:4518–4526

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shichiri M, Yoshinaga K, Hisatomi H, Sugihara K, Hirata Y (2002) Genetic and epigenetic inactivation of mitotic checkpoint genes hBUB1 and hBUBR1 and their relationship to survival. Cancer Res 62:13–17

    CAS  PubMed  Google Scholar 

  • Silva PMA, Delgado ML, Ribeiro N et al (2019) Spindly and Bub3 expression in oral cancer: prognostic and therapeutic implications. Oral Dis 25(5):1291–1301

    PubMed  Google Scholar 

  • Skinner JJ, Wood S, Shorter J, Englander SW, Black BE (2008) The Mad2 partial unfolding model: regulating mitosis through Mad2 conformational switching. J Cell Biol 183:761–768

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sotillo R, Hernando E, Diaz-Rodriguez E et al (2007) Mad2 overexpression promotes aneuploidy and tumorigenesis in mice. Cancer Cell 11:9–23

    CAS  PubMed  Google Scholar 

  • Sotillo R, Schvartzman JM, Socci ND, Benezra R (2010) Mad2-induced chromosome instability leads to lung tumour relapse after oncogene withdrawal. Nature 21

  • Storchova Z, Kuffer C (2008) The consequences of tetraploidy and aneuploidy. J Cell Sci 121:3859–3866

    CAS  PubMed  Google Scholar 

  • Sudo T, Nitta M, Saya H, Ueno NT (2004) Dependence of paclitaxel sensitivity on a functional spindle assembly checkpoint. Cancer Res 64:2502–2508

    CAS  PubMed  Google Scholar 

  • Sun Q, Zhang X, Liu T et al (2013) Increased expression of mitotic arrest deficient-like 1 (MAD1L1) is associated with poor prognosis and insensitive to Taxol treatment in breast cancer. Breast Cancer Res Treat 140(2):323–330. https://doi.org/10.1007/s10549-013-2633-8

    Article  CAS  PubMed  Google Scholar 

  • Takahashi T, Yamasaki F, Sudo T, Itamochi H, Adachi S, Tamamori-Adachi M et al (2005) Cyclin A-associated kinase activity is needed for paclitaxel sensitivity. Mol Cancer Ther 4(7):1039–1046

    CAS  PubMed  Google Scholar 

  • Tambe M, Pruikkonen S, Mäki-Jouppila J, Chen P, Elgaaen BV, Straume AH, Huhtinen K, Cárpen O, Lønning PE, Davidson B, Hautaniemi S, Kallio MJ (2016) Novel Mad2-targeting miR-493-3p controls mitotic fidelity and cancer cells' sensitivity to paclitaxel. Oncotarget. 7(11):12267–12285

    PubMed  PubMed Central  Google Scholar 

  • Taylor AM et al (2018) Genomic and functional approaches to understanding cancer aneuploidy. Cancer Cell 33:676–689

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tsukasaki K et al (2001) Mutations in the mitotic check point gene, MAD1L1, in human cancers. Oncogene 20:3301–3305

    CAS  PubMed  Google Scholar 

  • Vitale I, Manic G, Senovilla L, Kroemer G, Galluzzi L (2016) Karyotypic aberrations in oncogenesis and cancer therapy. Trends Cancer 1:124–135

    Google Scholar 

  • Wan J, Block S, Scribano CM et al (2019) Mad1 destabilizes p53 by preventing PML from sequestering MDM2. Nat Commun 10(1):1540

    PubMed  PubMed Central  Google Scholar 

  • Wang L, Wang J, Jin Y, Zheng J, Yang Y, Xi X (2019) Downregulation of Mad2 and BubR1 increase the malignant potential and nocodazole resistance by compromising spindle assembly checkpoint signaling pathway in cervical carcinogenesis. J Obstet Gynaecol Res 45(12):2407–2418

    CAS  PubMed  Google Scholar 

  • Weaver BA, Cleveland DW (2006) Does aneuploidy cause cancer? Curr Opin Cell Biol 18(6):658–667

    CAS  PubMed  Google Scholar 

  • Wu W, Liu F, Su A et al (2018) The effect and mechanism of millepachine-disrupted spindle assembly in tumor cells. Anti-Cancer Drugs 29(5):449–456

    CAS  PubMed  Google Scholar 

  • Xiao J et al (2014) Cyclin-dependent kinase 1 inhibitor RO3306 promotes mitotic slippage in paclitaxel-treated HepG2 cells. Neoplasma 61:41–47

    CAS  PubMed  Google Scholar 

  • Xie Y, Wang A, Lin J et al (2017) Mps1/TTK: a novel target and biomarker for cancer. J Drug Target 25(2):112–118. https://doi.org/10.1080/1061186X.2016.1258568

    Article  CAS  PubMed  Google Scholar 

  • Yamada HY, Gorbsky GJ (2006) Spindle checkpoint function and cellular sensitivity to antimitotic drugs. Mol Cancer Ther 5(12):2963–2969

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yamagishi Y, Yang C-H, Tanno Y, Watanabe Y (2012) MPS1/Mph1 phosphorylates the kinetochore protein KNL1/Spc7 to recruit SAC components. Nat Cell Biol 14:746–752

    CAS  PubMed  Google Scholar 

  • Yasuda H (2008) Solid tumor physiology and hypoxia-induced chemo/radio-resistance: novel strategy for cancer therapy: nitric oxide donor as a therapeutic enhancer. Nitric Oxide Biol Chem 19(2):205–216

    CAS  Google Scholar 

  • Yuan F, Jin X, Li D et al (2019) ULK1 phosphorylates Mad1 to regulate spindle assembly checkpoint. Nucleic Acids Res 47(15):8096–8110

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhong R, Chen X, Chen X et al (2015) MAD1L1 Arg558His and MAD2L1 Leu84Met interaction with smoking increase the risk of colorectal cancer. Sci Rep 5:12202. Published 2015 Jul 17. https://doi.org/10.1038/srep12202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou T, Bao Y, Ye S, Weng D, Chen G, Lu Y, Ma D, Wang S (2010) Effect of spindle checkpoint on Akt2-mediated paclitaxel-resistance in A2780 ovarian cancer cells. J Huazhong Univ Sci Technolog Med Sci 30(2):206–211

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant (R.12014/12/2018-HR) from the Department of Health Research, Govt. of India under Young Scientist-Human Resources Development (HRD) Scheme, to S.S.

Author information

Authors and Affiliations

Authors

Contributions

SS and VDN conceptualized and wrote the main manuscript, and all the authors contributed in re-writing and editing the final manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Vilas D. Nasare.

Ethics declarations

Competing interests

The authors declare that they have no competing interests.

Consent for publication

Not applicable.

Ethics approval and consent to participate

Not applicable.

Additional information

Matthew Breen

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sarkar, S., Sahoo, P.K., Mahata, S. et al. Mitotic checkpoint defects: en route to cancer and drug resistance. Chromosome Res 29, 131–144 (2021). https://doi.org/10.1007/s10577-020-09646-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10577-020-09646-x

Keywords

Navigation