Skip to main content

Advertisement

Log in

Making the most of a little: dosage effects in eukaryotic telomere length maintenance

  • Published:
Chromosome Research Aims and scope Submit manuscript

Abstract

Telomerase contains at least two essential components: the telomerase reverse transcriptase (TERT), and the telomerase RNA, which provides the template for the reverse transcription of new telomere DNA by TERT. Loss of telomerase enzymatic function leads to a progressive attrition of telomeric sequence over time, eventually resulting in the disappearance of detectable telomeric DNA and the emergence of chromosome end-to-end fusions, followed by growth arrest or cell death. Recently, the consequences of partial loss of telomerase function have revealed interesting dosage-dependent effects on telomere length and stability. In both mice and humans, hemizygosity for the telomerase RNA or TERT leads to an inability to maintain telomeres; in humans, this insufficiency can lead to diseases such as aplastic anaemia or dyskeratosis congenita. In the budding yeast S. cerevisiae, compound heterozygosity in different telomerase components also results in shortened telomeres. Thus, partial loss of telomerase function can result in a latent but measurable compromise in telomere length. These dosage-dependent effects illuminate a mechanism by which subtle heritable defects in genome integrity can eventually become pernicious.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Artandi SE, DePinho RA (2000) A critical role for telomeres in suppressing and facilitating carcinogenesis. Curr Opin Genet Dev 10: 39–46.

    Article  PubMed  Google Scholar 

  • Artandi SE, Chang S, Lee SL et al. (2000) Telomere dysfunction promotes non-reciprocal translocations and epithelial cancers in mice. Nature 406: 641–645.

    Article  PubMed  Google Scholar 

  • Askree SH, Yehuda T, Smolikov S et al. (2004) A genome-wide screen for Saccharomyces cerevisiae deletion mutants that affect telomere length. Proc Natl Acad Sci USA 101: 8658–8663.

    Article  PubMed  Google Scholar 

  • Atkinson KD (1985) Two recessive suppressors of Saccharomyces cerevisiae cho1 that are unlinked but fall in the same complementation group. Genetics 111: 1–6.

    PubMed  Google Scholar 

  • Baetz K, McHardy L, Gable K et al. (2004a) Yeast genome-wide drug-induced haploinsufficiency screen to determine drug mode of action. Proc Natl Acad Sci USA 101: 4525–4530.

    Article  PubMed  Google Scholar 

  • Baetz KK, Krogan NJ, Emili A, Greenblatt J, Hieter P (2004b) The ctf13-30/CTF13 genomic haploinsufficiency modifier screen identifies the yeast chromatin remodeling complex RSC, which is required for the establishment of sister chromatid cohesion. Mol Cell Biol 24: 1232–1244.

    Article  PubMed  Google Scholar 

  • Bai F, Pei XH, Godfrey VL, Xiong Y (2003) Haploinsufficiency of p18(INK4c) sensitizes mice to carcinogen-induced tumorigenesis. Mol Cell Biol 23: 1269–1277.

    PubMed  Google Scholar 

  • Bertuch AA, Lundblad V (2003) Which end: dissecting Ku’s function at telomeres and double-strand breaks. Genes Dev 17: 2347–2350.

    Article  PubMed  Google Scholar 

  • Bianchi A, de Lange T (1999) Ku binds telomeric DNA in vitro. J Biol Chem 274: 21223–21227.

    PubMed  Google Scholar 

  • Bisson LF, Thorner J (1982) Mutations in the pho80 gene confer permeability to 5′-mononucleotides in Saccharomyces cerevisiae. Genetics 102: 341–359.

    PubMed  Google Scholar 

  • Blackburn EH (2001) Switching and signaling at the telomere. Cell 106: 661–673.

    Article  PubMed  Google Scholar 

  • Blasco MA, Lee HW, Hande MP et al. (1997) Telomere shortening and tumor formation by mouse cells lacking telomerase RNA. Cell 91: 25–34.

    Article  PubMed  Google Scholar 

  • Bouffler SD, Hofland N, Cox R, Fodde R (2000) Evidence for Msh2 haploinsufficiency in mice revealed by MNU-induced sister-chromatid exchange analysis. Br J Cancer 83: 1291–1294.

    Article  PubMed  Google Scholar 

  • Bucholc M, Park Y, Lustig AJ (2001) Intrachromatid excision of telomeric DNA as a mechanism for telomere size control in Saccharomyces cerevisiae. Mol Cell Biol 21: 6559–6573.

    Article  PubMed  Google Scholar 

  • Cayuela ML, Flores JM, Blasco MA (2005) The telomerase RNA component Terc is required for the tumour-promoting effects of Tert overexpression. EMBO Rep 6: 268–274.

    Article  PubMed  Google Scholar 

  • Chai W, Ford LP, Lenertz L, Wright WE, Shay JW (2002) Human Ku70/80 associates physically with telomerase through interaction with hTERT. J Biol Chem 277: 47242–47247.

    Article  PubMed  Google Scholar 

  • Chen Q, IJpma A, Greider CW (2001) Two survivor pathways that allow growth in the absence of telomerase are generated by distinct telomere recombination events. Mol Cell Biol 21: 1819–1827.

    Article  PubMed  Google Scholar 

  • Chiang YJ, Hemann MT, Hathcock KS et al. (2004) Expression of telomerase RNA template, but not telomerase reverse transcriptase, is limiting for telomere length maintenance in vivo. Mol Cell Biol 24: 7024–7031.

    Article  PubMed  Google Scholar 

  • Chin L, Artandi SE, Shen Q et al. (1999) p53 deficiency rescues the adverse effects of telomere loss and cooperates with telomere dysfunction to accelerate carcinogenesis. Cell 97: 527–538.

    Article  PubMed  Google Scholar 

  • Comolli LR, Smirnov I, Xu L, Blackburn EH, James TL (2002) A molecular switch underlies a human telomerase disease. Proc Natl Acad Sci USA 99: 16998–17003.

    Article  PubMed  Google Scholar 

  • d’Adda di Fagagna F, Hande MP, Tong WM et al. (2001) Effects of DNA nonhomologous end-joining factors on telomere length and chromosomal stability in mammalian cells. Curr Biol 11: 1192–1196.

    PubMed  Google Scholar 

  • d’Adda di Fagagna F, Reaper PM, Clay-Farrace L et al. (2003) A DNA damage checkpoint-mediated response in telomere-initiated senescence. Nature 426: 194–198.

  • de Lange T (1998) Length control of human telomeres. Cancer J Sci Am 4 Suppl 1: S22–S25.

    PubMed  Google Scholar 

  • Deutschbauer AM, Jaramillo DF, Proctor M et al. (2005) Mechanisms of haploinsufficiency revealed by genome-wide profiling in yeast. Genetics 169: 1915–1925.

    Google Scholar 

  • Enomoto S, Glowczewski L, Lew-Smith J, Berman JG (2004) Telomere cap components influence the rate of senescence in telomerase-deficient yeast cells. Mol Cell Biol 24: 837–845.

    Article  PubMed  Google Scholar 

  • Erdmann N, Liu Y, Harrington L (2004) Distinct dosage requirements for the maintenance of long and short telomeres in mTert heterozygous mice. Proc Natl Acad Sci USA 101: 6080–6085.

    Article  PubMed  Google Scholar 

  • Espejel S, Blasco MA (2002) Identification of telomere-dependent “senescence-like” arrest in mouse embryonic fibroblasts. Exp Cell Res 276: 242–248.

    Article  PubMed  Google Scholar 

  • Espejel S, Franco S, Rodriguez-Perales S, Bouffler SD, Cigudosa JC, Blasco MA (2002) Mammalian Ku86 mediates chromosomal fusions and apoptosis caused by critically short telomeres. EMBO J 21: 2207–2219.

    Article  PubMed  Google Scholar 

  • Espejel S, Klatt P, Menissier-de Murcia J et al. (2004) Impact of telomerase ablation on organismal viability, aging, and tumorigenesis in mice lacking the DNA repair proteins PARP-1, Ku86, or DNA-PKcs. J Cell Biol 167: 627–638.

    Article  PubMed  Google Scholar 

  • Evans SK, Lundblad V (1999) Est1 and Cdc13 as comediators of telomerase access. Science 286: 117–120.

    Article  PubMed  Google Scholar 

  • Evans SK, Lundblad V (2002) The Est1 subunit of Saccharomyces cerevisiae telomerase makes multiple contributions to telomere length maintenance. Genetics 162: 1101–1115.

    PubMed  Google Scholar 

  • Farazi PA, Glickman J, Jiang S, Yu A, Rudolph KL, DePinho RA (2003) Differential impact of telomere dysfunction on initiation and progression of hepatocellular carcinoma. Cancer Res 63: 5021–5027.

    PubMed  Google Scholar 

  • Feldser DM, Hackett JA, Greider CW (2003) Telomere dysfunction and the initiation of genome instability. Nat Rev Cancer 3: 623–627.

    Article  PubMed  Google Scholar 

  • Fero ML, Randel E, Gurley KE, Roberts JM, Kemp CJ (1998) The murine gene p27Kip1 is haplo-insufficient for tumour suppression. Nature 396: 177–180.

    Article  PubMed  Google Scholar 

  • Fitzgerald MS, Riha K, Gao F, Ren S, McKnight TD, Shippen DE (1999) Disruption of the telomerase catalytic subunit gene from Arabidopsis inactivates telomerase and leads to a slow loss of telomeric DNA. Proc Natl Acad Sci USA 96: 14813–14818.

    Article  PubMed  Google Scholar 

  • Ford LP, Wright WE, Shay JW (2002) A model for heterogeneous nuclear ribonucleoproteins in telomere and telomerase regulation. Oncogene 21: 580–583.

    Article  PubMed  Google Scholar 

  • Forstemann K, Hoss M, Lingner J (2000) Telomerase-dependent repeat divergence at the 3′ ends of yeast telomeres. Nucleic Acids Res 28: 2690–2694.

    PubMed  Google Scholar 

  • Giaever G, Flaherty P, Kumm J et al. (2004) Chemogenomic profiling: identifying the functional interactions of small molecules in yeast. Proc Natl Acad Sci USA 101: 793–798.

    Article  PubMed  Google Scholar 

  • Gonzalez-Suarez E, Samper E, Ramirez A et al. (2001) Increased epidermal tumors and increased skin wound healing in transgenic mice overexpressing the catalytic subunit of telomerase, mTERT, in basal keratinocytes. EMBO J 20: 2619–2630.

    Article  PubMed  Google Scholar 

  • Gonzalez-Suarez E, Geserick C, Flores JM, Blasco MA (2005) Antagonistic effects of telomerase on cancer and aging in K5-mTert transgenic mice. Oncogene 24: 2256–2270.

    Article  PubMed  Google Scholar 

  • Goss KH, Risinger MA, Kordich JJ et al. (2002) Enhanced tumor formation in mice heterozygous for Blm mutation. Science 297: 2051–2053.

    Article  PubMed  Google Scholar 

  • Goytisolo FA, Samper E, Edmonson S, Taccioli GE, Blasco MA (2001) The absence of the DNA-dependent protein kinase catalytic subunit in mice results in anaphase bridges and in increased telomeric fusions with normal telomere length and G-strand overhang. Mol Cell Biol 21: 3642–3651.

    Article  PubMed  Google Scholar 

  • Grandin N, Charbonneau M (2003) The Rad51 pathway of telomerase-independent maintenance of telomeres can amplify TG1-3 sequences in yku and cdc13 mutants of Saccharomyces cerevisiae. Mol Cell Biol 23: 3721–3734.

    Article  PubMed  Google Scholar 

  • Greenberg RA, Chin L, Femino A et al. (1999) Short dysfunctional telomeres impair tumorigenesis in the INK4a(delta2/3) cancer-prone mouse. Cell 97: 515–525.

    Article  PubMed  Google Scholar 

  • Greider CW (1998a) Telomerase activity, cell proliferation, and cancer. Proc Natl Acad Sci USA 95: 90–92.

    Article  PubMed  Google Scholar 

  • Greider CW (1998b) Telomeres and senescence: the history, the experiment, the future. Curr Biol 8: R178–R181.

    Article  PubMed  Google Scholar 

  • Hackett J, Greider CW (2003) End resection initiates genomic instability in the absence of telomerase. Mol Cell Biol 23: 8450–8461.

    Google Scholar 

  • Hathcock KS, Hemann MT, Opperman KK, Strong MA, Greider CW, Hodes RJ (2002) Haploinsufficiency of mTR results in defects in telomere elongation. Proc Natl Acad Sci USA 99: 3591–3596.

    Article  PubMed  Google Scholar 

  • Hemann MT, Greider CW (2000) Wild-derived inbred mouse strains have short telomeres. Nucleic Acids Res 28: 4474–4478.

    Article  PubMed  Google Scholar 

  • Hemann MT, Rudolph KL, Strong MA, DePinho RA, Chin L, Greider CW (2001a) Telomere dysfunction triggers developmentally regulated germ cell apoptosis. Mol Biol Cell 12: 2023–2030.

    PubMed  Google Scholar 

  • Hemann MT, Strong MA, Hao LY, Greider CW (2001b) The shortest telomere, not average telomere length, is critical for cell viability and chromosome stability. Cell 107: 67–77.

    Article  PubMed  Google Scholar 

  • Hsu HL, Gilley D, Blackburn EH, Chen DJ (1999) Ku is associated with the telomere in mammals. Proc Natl Acad Sci USA 96: 12454–12458.

    Article  PubMed  Google Scholar 

  • Hsu HL, Gilley D, Galande SA et al. (2000) Ku acts in a unique way at the mammalian telomere to prevent end joining. Genes Dev 14: 2807–2812.

    Article  PubMed  Google Scholar 

  • Hughes TR, Evans SK, Weilbaecher RG, Lundblad V (2000) The Est3 protein is a subunit of yeast telomerase. Curr Biol 10: 809–812.

    Article  PubMed  Google Scholar 

  • IJpma AS, Greider CW (2003) Short telomeres induce a DNA damage response in Saccharomyces cerevisiae. Mol Biol Cell 14: 987–1001.

    Article  PubMed  Google Scholar 

  • Jaco I, Munoz P, Blasco MA (2004) Role of human Ku86 in telomere length maintenance and telomere capping. Cancer Res 64: 7271–7278.

    PubMed  Google Scholar 

  • Joseph I, Jia D, Lustig AJ (2005) Ndj1p-dependent epigenetic resetting of telomere size in yeast meiosis. Curr Biol 15: 231–237.

    Article  PubMed  Google Scholar 

  • Kang HJ, Choi YS, Hong SB et al. (2004) Ectopic expression of the catalytic subunit of telomerase protects against brain injury resulting from ischemia and NMDA-induced neurotoxicity. J Neurosci 24: 1280–1287.

    Article  PubMed  Google Scholar 

  • Karlseder J (2003) Telomere repeat binding factors: keeping the ends in check. Cancer Lett 194: 189–197.

    Article  PubMed  Google Scholar 

  • Kishi S, Uchiyama J, Baughman AM, Goto T, Lin MC, Tsai SB (2003) The zebrafish as a vertebrate model of functional aging and very gradual senescence. Exp Gerontol 38: 777–786.

    Article  PubMed  Google Scholar 

  • LaBranche H, Dupuis S, Ben-David Y, Bani MR, Wellinger RJ, Chabot B (1998) Telomere elongation by hnRNP A1 and a derivative that interacts with telomeric repeats and telomerase. Nat Genet 19: 199–202.

    Article  PubMed  Google Scholar 

  • Lee, HW, Blasco, MA, Gottlieb, GJ, Horner, JW II, Greider, CW, DePinho, RA (1998) Essential role of mouse telomerase in highly proliferative organs. Nature 392: 569–574.

    Article  PubMed  Google Scholar 

  • Lee MK, Hande MP, Sabapathy K (2005) Ectopic mTERT expression in mouse embryonic stem cells does not affect differentiation but confers resistance to differentiation- and stress-induced p53-dependent apoptosis. J Cell Sci 118: 819–829.

    Article  PubMed  Google Scholar 

  • Lendvay TS, Morris DK, Sah J, Balasubramanian B, Lundblad V (1996) Senescence mutants of Saccharomyces cerevisiae with a defect in telomere replication identify three additional EST genes. Genetics 144: 1399–1412.

    PubMed  Google Scholar 

  • Li B, de Lange T (2003) Rap1 affects the length and heterogeneity of human telomeres. Mol Cell Biol 14: 5060–5068.

    Google Scholar 

  • Li B, Lustig AJ (1996) A novel mechanism for telomere size control in Saccharomyces cerevisiae. Genes Dev 10: 1310–1326.

    PubMed  Google Scholar 

  • Li G, Nelsen C, Hendrickson EA (2002) Ku86 is essential in human somatic cells. Proc Natl Acad Sci USA 99: 832–837.

    PubMed  Google Scholar 

  • Lindblad K, Schalling M (1999) Expanded repeat sequences and disease. Semin Neurol 19: 289–299.

    PubMed  Google Scholar 

  • Lingner J, Cech TR, Hughes TR, Lundblad V (1997a) Three Ever Shorter Telomere (EST) genes are dispensable for in vitro yeast telomerase activity. Proc Natl Acad Sci USA 94: 11190–11195.

    Article  PubMed  Google Scholar 

  • Lingner J, Hughes TR, Shevchenko A, Mann M, Lundblad V, Cech TR (1997b) Reverse transcriptase motifs in the catalytic subunit of telomerase. Science 276: 561–567.

    PubMed  Google Scholar 

  • Liu Y, Kha H, Ungrin M, Robinson MO, Harrington L (2002) Preferential maintenance of critically short telomeres in mammalian cells heterozygous for mTert. Proc Natl Acad Sci USA 99: 3597–3602.

    Article  PubMed  Google Scholar 

  • Lowell JE, Roughton AI, Lundblad V, Pillus L (2003) Telomerase-independent proliferation is influenced by cell type in Saccharomyces cerevisiae. Genetics 164: 909–921.

    PubMed  Google Scholar 

  • Lundblad V (2002) Telomere maintenance without telomerase. Oncogene 21: 522–531.

    Article  PubMed  Google Scholar 

  • Lundblad V (2003) Telomeres: taking the measure. Nature 424: 926–927.

    Article  Google Scholar 

  • Lundblad V, Blackburn EH (1993) An alternative pathway for yeast telomere maintenance rescues est1- senescence. Cell 73: 347–360.

    Article  PubMed  Google Scholar 

  • Lundblad V, Szostak JW (1989) A mutant with a defect in telomere elongation leads to senescence in yeast. Cell 57: 633–643.

    Article  PubMed  Google Scholar 

  • Lydall D (2003) Hiding at the ends of yeast chromosomes: telomeres, nucleases and checkpoint pathways. J Cell Sci 116: 4057–4065.

    Article  PubMed  Google Scholar 

  • Mangahas JL, Alexander MK, Sandell LL, Zakian VA (2001) Repair of chromosome ends after telomere loss in Saccharomyces. Mol Cell Biol 12: 4078–4089.

    PubMed  Google Scholar 

  • Marcand S, Gilson E, Shore D (1997a) A protein-counting mechanism for telomere length regulation in yeast. Science 275: 986–990.

    Article  PubMed  Google Scholar 

  • Marcand S, Wotton D, Gilson E, Shore D (1997b) Rap1p and telomere length regulation in yeast. Ciba Found Symp 211: 76–93; discussion 93–103.

    PubMed  Google Scholar 

  • Marcand S, Brevet V, Gilson E (1999) Progressive cis-inhibition of telomerase upon telomere elongation. EMBO J 18: 3509–3519.

    Article  PubMed  Google Scholar 

  • Martin-Rivera L, Herrera E, Albar JP, Blasco MA (1998) Expression of mouse telomerase catalytic subunit in embryos and adult tissues. Proc Natl Acad Sci USA 95: 10471–10476.

    Article  PubMed  Google Scholar 

  • Martin-Ruiz C, Saretzki G, Petrie J et al. (2004) J Biol Chem. 279: 17826–17833. Epub 2004.

  • Masutomi K, Yu EY, Khurts S et al. (2003) Telomerase maintains telomere structure in normal human cells. Cell 114: 241–253.

    Article  PubMed  Google Scholar 

  • McEachern MJ, Underwood DH, Blackburn EH (2002) Dynamics of telomeric DNA turnover in yeast. Genetics 160: 63–73.

    PubMed  Google Scholar 

  • McPherson JP, Lemmers B, Chahwan R et al. (2004) Involvement of mammalian Mus81 in genome integrity and tumor suppression. Science 304: 1822–1826.

    Article  PubMed  Google Scholar 

  • Measday V, Hieter P (2002) Synthetic dosage lethality. Methods Enzymol 350: 316–326.

    PubMed  Google Scholar 

  • Myung K, Ghosh G, Fattah FJ et al. (2004) Regulation of telomere length and suppression of genomic instability in human somatic cells by Ku86. Mol Cell Biol 24: 5050–5059.

    Article  PubMed  Google Scholar 

  • Nautiyal S, DeRisi JL, Blackburn EH (2002) The genome-wide expression response to telomerase deletion in Saccharomyces cerevisiae. Proc Natl Acad Sci USA 99: 9316–9321.

    Article  PubMed  Google Scholar 

  • Papp B, Pal C, Hurst LD (2003) Dosage sensitivity and the evolution of gene families in yeast. Nature 424: 194–197.

    Article  PubMed  Google Scholar 

  • Pardue ML, DeBaryshe PG (2003) Retrotransposons provide an evolutionarily robust non-telomerase mechanism to maintain telomeres. Annu Rev Genet 37: 485–511.

    Article  PubMed  Google Scholar 

  • Polotnianka RM, Li J, Lustig AJ (1998) The yeast Ku heterodimer is essential for protection of the telomere against nucleolytic and recombinational activities. Curr Biol 8: 831–834.

    Article  PubMed  Google Scholar 

  • Prowse KR, Greider CW (1995) Developmental and tissue-specific regulation of mouse telomerase and telomere length. Proc Natl Acad Sci USA 92: 4818–4822.

    PubMed  Google Scholar 

  • Qi H, Zakian VA (2000) The Saccharomyces telomere-binding protein Cdc13p interacts with both the catalytic subunit of DNA polymerase alpha and the telomerase-associated est1 protein. Genes Dev 14: 1777–1788.

    PubMed  Google Scholar 

  • Qi L, Strong MA, Karim BO, Armanios M, Huso DL, Greider CW (2003) Short telomeres and ataxia-telangiectasia mutated deficiency cooperatively increase telomere dysfunction and suppress tumorigenesis. Cancer Res 63: 8188–8196.

    PubMed  Google Scholar 

  • Raff EC, Fuller MT, Kaufman TC, Kemphues KJ, Rudolph JE, Raff RA (1982) Regulation of tubulin gene expression during embryogenesis in Drosophila melanogaster. Cell 28: 33–40.

    Article  PubMed  Google Scholar 

  • Ray A, Runge KW (1998) The C terminus of the major yeast telomere binding protein Rap1p enhances telomere formation. Mol Cell Biol 18: 1284–1295.

    PubMed  Google Scholar 

  • Ray A, Runge KW (1999a) Varying the number of telomere-bound proteins does not alter telomere length in tel1Delta cells. Proc Natl Acad Sci USA 96: 15044–15049.

    Article  PubMed  Google Scholar 

  • Ray A, Runge KW (1999b) The yeast telomere length counting machinery is sensitive to sequences at the telomere–nontelomere junction. Mol Cell Biol 19: 31–45.

    PubMed  Google Scholar 

  • Reddel RR (2003) Alternative lengthening of telomeres, telomerase, and cancer. Cancer Lett 194: 155–162.

    Article  PubMed  Google Scholar 

  • Reddel RR, Bryan TM (2003) Alternative lengthening of telomeres: dangerous road less travelled. Lancet 361: 1840–1841.

    Article  PubMed  Google Scholar 

  • Riha K, Shippen DE (2003) Telomere structure, function and maintenance in Arabidopsis. Chromosome Res 11: 263–275.

    Article  PubMed  Google Scholar 

  • Riha K, McKnight TD, Griffing LR, Shippen DE (2001) Living with genome instability: plant responses to telomere dysfunction. Science 291: 1797–1800.

    Article  PubMed  Google Scholar 

  • Rine J, Herskowitz I (1987) Four genes responsible for a position effect on expression from HML and HMR in Saccharomyces cerevisiae. Genetics 116: 9–22.

    PubMed  Google Scholar 

  • Rog O, Smolikov S, Krauskopf A, Kupiec M (2005) The yeast VPS genes affect telomere length regulation. Curr Genet 47: 18–28.

    Article  PubMed  Google Scholar 

  • Roth A, Yssel H, Pene J et al. (2003) Telomerase levels control the lifespan of human T lymphocytes. Blood 102: 849–857.

    Article  PubMed  Google Scholar 

  • Rudolph KL, Chang S, Lee HW et al. (1999) Longevity, stress response, and cancer in aging telomerase-deficient mice. Cell 96: 701–712.

    Article  PubMed  Google Scholar 

  • Samper E, Goytisolo FA, Slijepcevic P, van Buul PP, Blasco MA (2000) Mammalian Ku86 protein prevents telomeric fusions independently of the length of TTAGGG repeats and the G-strand overhang. EMBO Rep 1: 244–252.

    Article  PubMed  Google Scholar 

  • Samper E, Flores JM, Blasco MA (2001) Restoration of telomerase activity rescues chromosomal instability and premature aging in Terc−/− mice with short telomeres. EMBO Rep 2: 800–807.

    Article  PubMed  Google Scholar 

  • Seto AG, Livengood AJ, Tzfati Y, Blackburn EH, Cech TR (2002) A bulged stem tethers Est1p to telomerase RNA in budding yeast. Genes Dev 16: 2800–2812.

    Article  PubMed  Google Scholar 

  • Shampay J, Blackburn EH (1988) Generation of telomere-length heterogeneity in Saccharomyces cerevisiae. Proc Natl Acad Sci USA 85: 534–538.

    PubMed  Google Scholar 

  • Shay J, Wright WE (2005) Does telomerase moonlight? Scientist 18: 18–19.

    Google Scholar 

  • Singer MS, Gottschling DE (1994) TLC1: template RNA component of Saccharomyces cerevisiae telomerase. Science 266: 404–409.

    PubMed  Google Scholar 

  • Smilenov LB, Lieberman HB, Mitchell SA, Baker RA, Hopkins KM, Hall EJ (2005) Combined haploinsufficiency for ATM and RAD9 as a factor in cell transformation, apoptosis, and DNA lesion repair dynamics. Cancer Res 65: 933–938.

    PubMed  Google Scholar 

  • Smith LL, Coller HA, Roberts JM (2003) Telomerase modulates expression of growth-controlling genes and enhances cell proliferation. Nat Cell Biol 5: 474–479.

    Article  PubMed  Google Scholar 

  • Smogorzewska A, de Lange T (2002) Different telomere damage signaling pathways in human and mouse cells. EMBO J 21: 4338–4348.

    Article  PubMed  Google Scholar 

  • Smogorzewska A, de Lange T (2004) Regulation of telomerase by telomeric proteins. Annu Rev Biochem 73: 177–208.

    Google Scholar 

  • Stearns T, Botstein D (1988) Unlinked noncomplementation: isolation of new conditional-lethal mutations in each of the tubulin genes of Saccharomyces cerevisiae. Genetics 119: 249–260.

    PubMed  Google Scholar 

  • Steiner BR, Hidaka K, Futcher B (1996) Association of the Est1 protein with telomerase activity in yeast. Proc Natl Acad Sci USA 93: 2817–2821.

    Article  PubMed  Google Scholar 

  • Taggart AK, Teng SC, Zakian VA (2002) Est1p as a cell cycle-regulated activator of telomere-bound telomerase. Science 297: 1023–1026.

    Article  PubMed  Google Scholar 

  • Takai H, Smogorzewska A, de Lange T (2003) DNA damage foci at dysfunctional telomeres. Curr Biol 13: 1549–1556.

    Article  PubMed  Google Scholar 

  • Teixeira MT, Arneric M, Sperisen P, Lingner J (2004) Telomere length homeostasis is achieved via a switch between telomerase- extendible and -nonextendible states. Cell 117: 323–335.

    Google Scholar 

  • Theimer CA, Finger LD, Trantirek L, Feigon J (2003) Mutations linked to dyskeratosis congenita cause changes in the structural equilibrium in telomerase RNA. Proc Natl Acad Sci USA 100: 449–454.

    Article  PubMed  Google Scholar 

  • Ting NS, Yu Y, Pohorelic B, Lees-Miller SP, Beattie TL (2005) Human Ku70/80 interacts directly with hTR, the RNA component of human telomerase. Nucleic Acids Res 33: 2090–2098.

    PubMed  Google Scholar 

  • Tomaska L, McEachern MJ, Nosek J (2004) Alternatives to telomerase: keeping linear chromosomes via telomeric circles. FEBS Lett 567: 142–146.

    Article  PubMed  Google Scholar 

  • Vaziri H, Dragowska W, Allsopp RC, Thomas TE, Harley CB, Lansdorp PM (1994) Evidence for a mitotic clock in human hematopoietic stem cells: loss of telomeric DNA with age. Proc Natl Acad Sci USA 91: 9857–9860.

    PubMed  Google Scholar 

  • Veitia RA (2002) Exploring the etiology of haploinsufficiency. Bioessays 24: 175–184.

    Article  PubMed  Google Scholar 

  • Veitia RA (2003) Nonlinear effects in macromolecular assembly and dosage sensitivity. J Theor Biol 220: 19–25.

    Article  PubMed  Google Scholar 

  • Venkatesan RN, Price C (1998) Telomerase expression in chickens: constitutive activity in somatic tissues and down-regulation in culture. Proc Natl Acad Sci USA 95: 14763–14768.

    Article  PubMed  Google Scholar 

  • Virta-Pearlman V, Morris DK, Lundblad V (1996) Est1 has the properties of a single-stranded telomere end-binding protein. Genes Dev 10: 3094–3104.

    PubMed  Google Scholar 

  • Vulliamy T, Marrone A, Goldman F et al. (2001a) The RNA component of telomerase is mutated in autosomal dominant dyskeratosis congenita. Nature 413: 432–435.

    Article  PubMed  Google Scholar 

  • Vulliamy TJ, Knight SW, Mason PJ, Dokal I (2001b) Very short telomeres in the peripheral blood of patients with X-linked and autosomal dyskeratosis congenita. Blood Cells Mol Dis 27: 353–357.

    Article  PubMed  Google Scholar 

  • Vulliamy T, Marrone A, Dokal I, Mason PJ (2002) Association between aplastic anaemia and mutations in telomerase RNA. Lancet 359: 2168–2170.

    Article  PubMed  Google Scholar 

  • Wang RC, Smogorzewska A, de Lange T (2004) Homologous recombination generates T-loop-sized deletions at human telomeres. Cell 119: 355–368.

    Article  PubMed  Google Scholar 

  • Wong KK, Chang S, Weiler SR et al. (2000) Telomere dysfunction impairs DNA repair and enhances sensitivity to ionizing radiation. Nat Genet 26: 85–88.

    Article  PubMed  Google Scholar 

  • Wong KK, Master RS, Bachoo RM et al. (2003) Telomere dysfunction and Atm deficiency compromises organ homeostasis and accelerates aging. Nature 421: 643–648.

    Article  PubMed  Google Scholar 

  • Wotton D, Shore D (1997) A novel Rap1p-interacting factor, Rif2p, cooperates with Rif1p to regulate telomere length in Saccharomyces cerevisiae. Genes Dev 11: 748–760.

    PubMed  Google Scholar 

  • Yamaguchi H, Calado RT, Ly H et al. (2005) Mutations in TERT, the gene for telomerase reverse transcriptase, in aplastic anemia. N Engl J Med 352: 1413–1424.

    Article  PubMed  Google Scholar 

  • Yui J, Chiu CP, Lansdorp PM (1998) Telomerase activity in candidate stem cells from fetal liver and adult bone marrow. Blood 91: 3255–3262.

    PubMed  Google Scholar 

  • Zhang S, Lloyd R, Bowden G, Glickman BW, de Boer JG (2002) Msh2 deficiency increases the mutation frequency in all parts of the mouse colon. Environ Mol Mutagen 40: 243–250.

    Article  PubMed  Google Scholar 

  • Zheng L, Flesken-Nikitin A, Chen PL, Lee WH (2002) Deficiency of Retinoblastoma gene in mouse embryonic stem cells leads to genetic instability. Cancer Res 62: 2498–2502.

    PubMed  Google Scholar 

  • Zhou J, Hidaka K, Futcher B (2000) The Est1 subunit of yeast telomerase binds the Tlc1 telomerase RNA. Mol Cell Biol 20: 1947–1955.

    Article  PubMed  Google Scholar 

  • Zou Y, Sfeir A, Gryaznov SM, Shay JW, Wright WE (2004) Does a sentinel or a subset of short telomeres determine replicative senescence? Mol Biol Cell 15: 3709–3718.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lea Harrington.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Harrington, L. Making the most of a little: dosage effects in eukaryotic telomere length maintenance. Chromosome Res 13, 493–504 (2005). https://doi.org/10.1007/s10577-005-0994-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10577-005-0994-5

Key words

Navigation