Skip to main content

Advertisement

Log in

HIF-1α in the Crosstalk Between Reactive Oxygen Species and Autophagy Process: A Review in Multiple Sclerosis

  • Review Paper
  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Cellular stress can lead to the production of reactive oxygen species (ROS) while autophagy, as a catabolic pathway, protects the cells against stress. Autophagy in its turn plays a pivotal role in the pathophysiology of multiple sclerosis (MS). In the current review, we first summarized the contribution of ROS and autophagy to MS pathogenesis. Then probable crosstalk between these two pathways through HIF-1α for the first time has been proposed with the hope of employing a better understanding of MS pathophysiology and probable therapeutic approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Aboul-Enein F, Rauschka H, Kornek B, Stadelmann C, Stefferl A, Brück W, Lucchinetti C, Schmidbauer M, Jellinger K, Lassmann H (2003) Preferential loss of myelin-associated glycoprotein reflects hypoxia-like white matter damage in stroke and inflammatory brain diseases. J Neuropathol Exp Neurol 62:25–33

    CAS  PubMed  Google Scholar 

  • Ahmadi M, Aleagha MS, Harirchian MH, Yarani R, Tavakoli F, Siroos B (2016) Multiple sclerosis influences on the augmentation of serum Klotho concentration. J Neurol Sci 362:69–72

    CAS  PubMed  Google Scholar 

  • Aleagha MS, Siroos B, Ahmadi M, Balood M, Palangi A, Haghighi AN, Harirchian MH (2015) Decreased concentration of Klotho in the cerebrospinal fluid of patients with relapsing–remitting multiple sclerosis. J Neuroimmunol 281:5–8

    Google Scholar 

  • Andhavarapu S, Mubariz F, Arvas M, BeverJr C, Makar TK (2019) Interplay between ER stress and autophagy: a possible mechanism in multiple sclerosis pathology. Exp Mol Pathol 108:183–190

    CAS  PubMed  Google Scholar 

  • Argaw AT, Zhang Y, Snyder BJ, Zhao ML, Kopp N, Lee SC, Raine CS, Brosnan CF, John GR (2006) IL-1beta regulates blood-brain barrier permeability via reactivation of the hypoxia-angiogenesis program. J Immunol 177:5574–5584

    CAS  PubMed  Google Scholar 

  • Azad MB, Chen Y, Gibson SB (2009) Regulation of autophagy by reactive oxygen species (ROS): implications for cancer progression and treatment. Antioxid Redox Signal 11(4):777–790

    CAS  PubMed  Google Scholar 

  • Baranova O, Miranda LF, Pichiule P, Dragatsis I, Johnson RS, Chavez JC (2007) Neuron-specific inactivation of the hypoxia inducible factor 1 alpha increases brain injury in a mouse model of transient focal cerebral ischemia. J Neurosci 27:6320–6332

    CAS  PubMed  PubMed Central  Google Scholar 

  • Beal M (1996) Aging, energy, and oxidative stress in neurodegenerative diseases. Restor Neurol Neurosci 3:180–181

    Google Scholar 

  • Bellot G, Garcia-Medina R, Gounon P, Chiche J, Roux D, Pouysségur J, Mazure NM (2009) Hypoxia-induced autophagy is mediated through HIF-induction of BNIP3 and BNIP3L via their BH3-domains. Mol Cell Biol 29:2570–2581

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bohensky J, Shapiro IM, Leshinsky S, Terkhorn SP, Adams CS, Srinivas V (2007) HIF-1 regulation of chondrocyte apoptosis: induction of the autophagic pathway. Autophagy 3:207–214

    CAS  PubMed  Google Scholar 

  • Castellazzi M, Patergnani S, Donadio M, Giorgi C, Bonora M, Fainardi E, Casetta I, Granieri E, Pugliatti M, Pinton P (2019) Correlation between auto/mitophagic processes and magnetic resonance imaging activity in multiple sclerosis patients. J Neuroinflamm 16(1):1–8

    Google Scholar 

  • Chen Y, McMillan-Ward E, Kong J, Israels SJ, Gibson SB (2008) Oxidative stress induces autophagic cell death independent of apoptosis in transformed and cancer cells. Cell Death Differ 15(1):171–182

    CAS  PubMed  Google Scholar 

  • Chen Y, Azad MB, Gibson SB (2009) Superoxide is the major reactive oxygen species regulating autophagy. Cell Death Differ 16(7):1040–1052

    CAS  PubMed  Google Scholar 

  • Ciechanover A (2005) Proteolysis: from the lysosome to ubiquitin and the proteasome. Nat Rev Mol Cell Biol 6:79–87

    CAS  PubMed  Google Scholar 

  • Cramer T, Yamanishi Y, Clausen BE, Förster I, Pawlinski R, Mackman N, Haase VH, Jaenisch R, Corr M, Nizet V, Firestein GS (2003) HIF-1alpha is essential for myeloid cell-mediated inflammation. Cell 112:645–657

    CAS  PubMed  PubMed Central  Google Scholar 

  • Desai RA, Davies AL, Tachrount M, Kasti M, Laulund F, Golay X, Smith KJ (2016) Cause and prevention of demyelination in a model multiple sclerosis lesion. Ann Neurol 79(4):591–604

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dhuria SV, Hanson LR, Frey WH (2010) II Intranasal delivery to the central nervous system: mechanisms and experimental considerations. J Pharm Sci 99(4):1654–1673

    CAS  PubMed  Google Scholar 

  • Di Dalmazi G, Hirshberg J, Lyle D, Freij JB, Caturegli P (2016) Reactive oxygen species in organ-specific autoimmunity. Autoimmun Highlights 7(1):1–1

    Google Scholar 

  • Dikic I, Elazar Z (2018) Mechanism and medical implications of mammalian autophagy. Nat Rev Mol Cell Biol 19(6):349–364

    CAS  PubMed  Google Scholar 

  • Feng X, Hou H, Zou Y, Guo L (2017) Defective autophagy is associated with neuronal injury in a mouse model of multiple sclerosis. Bosn J Basic Med Sci 17(2):95

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fiorini A, Koudriavtseva T, Bucaj E, Coccia R, Foppoli C, Giorgi A, Schininà ME, Di Domenico F, De Marco F, Perluigi M (2013) Involvement of oxidative stress in occurrence of relapses in multiple sclerosis: the spectrum of oxidatively modified serum proteins detected by proteomics and redox proteomics analysis. PLoS ONE 8(6):e65184

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fischer MT, Sharma R, Lim JL, Haider L, Frischer JM, Drexhage J, Mahad D, Bradl M, van Horssen J, Lassmann H (2012) NADPH oxidase expression in active multiple sclerosis lesions in relation to oxidative tissue damage and mitochondrial injury. Brain 135(3):886–899

    PubMed  PubMed Central  Google Scholar 

  • Gilgun-Sherki Y, Melamed E, Offen D (2001) Oxidative stress induced-neurodegenerative diseases: the need for antioxidants that penetrate the blood brain barrier. Neuropharmacology 40(8):959–975

    CAS  PubMed  Google Scholar 

  • Gilgun-Sherki Y, Melamed E, Offen D (2004) The role of oxidative stress in the pathogenesis of multiple sclerosis: the need for effective antioxidant therapy. J Neurol 251(3):261–268

    CAS  PubMed  Google Scholar 

  • Graumann U, Reynolds R, Steck AJ, Schaeren-Wiemers N (2003) Molecular changes in normal appearing white matter in multiple sclerosis are characteristic of neuroprotective mechanisms against hypoxic insult. Brain Pathol 13:554–573

    CAS  PubMed  Google Scholar 

  • Guan SY, Leng RX, Tao JH, Li XP, Ye DQ, Olsen N, Zheng SG, Pan HF (2017) Hypoxia-inducible factor-1α: a promising therapeutic target for autoimmune diseases. Expert Opin Ther Targets 21(7):715–723

    CAS  PubMed  Google Scholar 

  • Haider L, Fischer MT, Frischer JM, Bauer J, Höftberger R, Botond G, Esterbauer H, Binder CJ, Witztum JL, Lassmann H (2011) Oxidative damage in multiple sclerosis lesions. Brain 134(7):1914–1924

    PubMed  PubMed Central  Google Scholar 

  • Halder SK, Milner R (2021) Hypoxia in multiple sclerosis; is it the chicken or the egg? Brain 144(2):402–410

    PubMed  Google Scholar 

  • He L, He T, Farrar S, Ji L, Liu T, Ma X (2017) Antioxidants maintain cellular redox homeostasis by elimination of reactive oxygen species. Cell Physiol Biochem 44(2):532–553

    PubMed  Google Scholar 

  • Igci M, Baysan M, Yigiter R, Ulasli M, Geyik S, Bayraktar R, Bozgeyik İ, Bozgeyik E, Bayram A, Cakmak EA (2016) Gene expression profiles of autophagy-related genes in multiple sclerosis. Gene 588(1):38–46

    CAS  PubMed  Google Scholar 

  • Karami M, Mehrabi F, Allameh A, Kakhki MP, Amiri M, Aleagha MS (2017) Klotho gene expression decreases in peripheral blood mononuclear cells (PBMCs) of patients with relapsing-remitting multiple sclerosis. J Neurol Sci 381:305–307

    CAS  PubMed  Google Scholar 

  • Kaushik DK, Gupta M, Das S, Basu A (2010) Krüppel-like factor 4, a novel transcription factor regulates microglial activation and subsequent neuroinflammation. J Neuroinflamm 7(1):1–20

    Google Scholar 

  • Lassmann H (2003) Hypoxia-like tissue injury as a component of multiple sclerosis lesions. J Neurol Sci 206(2):187–191

    CAS  PubMed  Google Scholar 

  • Le Moan N, Baeten KM, Rafalski VA, Ryu JK, Coronado PE, Bedard C, Syme C, Davalos D, Akassoglou K (2015) Hypoxia inducible factor-1 in astrocytes and/or myeloid cells is not required for the development of autoimmune demyelinating disease. eNeuro 2

  • Lee SJ, Cho KS, Koh JY (2009) Oxidative injury triggers autophagy in astrocytes: the role of endogenous zinc. Glia 57(12):1351–1361

    PubMed  Google Scholar 

  • Li L, Tan J, Miao Y, Lei P, Zhang Q (2015) ROS and autophagy: interactions and molecular regulatory mechanisms. Cell Mol Neurobiol 35(5):615–621

    PubMed  Google Scholar 

  • Li HS, Zhou YN, Li L, Li SF, Long D, Chen XL, Zhang JB, Feng L, Li YP (2019) HIF-1α protects against oxidative stress by directly targeting mitochondria. Redox Biol 25:101109

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liang P, Le W (2015) Role of autophagy in the pathogenesis of multiple sclerosis. Neurosci Bull 31(4):435–444

    CAS  PubMed  PubMed Central  Google Scholar 

  • Marik C, Felts PA, Bauer J, Lassmann H, Smith KJ (2007) Lesion genesis in a subset of patients with multiple sclerosis: a role for innate immunity? Brain 130:2800–2815

    PubMed  Google Scholar 

  • Martinez Sosa S, Smith KJ (2017) Understanding a role for hypoxia in lesion formation and location in the deep and periventricular white matter in small vessel disease and multiple sclerosis. Clin Sci 131(20):2503–2524

    CAS  Google Scholar 

  • Mazure NM, Pouyssegur J (2010) Hypoxia-induced autophagy: cell death or cell survival? Curr Opin Cell Biol 22(2):177–180

    CAS  PubMed  Google Scholar 

  • Meikle L, Pollizzi K, Egnor A, Kramvis I, Lane H, Sahin M, Kwiatkowski DJ (2008) Response of a neuronal model of tuberous sclerosis to mammalian target of rapamycin (mTOR) inhibitors: effects on mTORC1 and Akt signaling lead to improved survival and function. J Neurosci 28(21):5422–5432

    CAS  PubMed  PubMed Central  Google Scholar 

  • Merelli A, Rodríguez JC, Folch J, Regueiro MR, Camins A, Lazarowski A (2018) Understanding the role of hypoxia inducible factor during neurodegeneration for new therapeutics opportunities. Curr Neuropharmacol 16(10):1484–1498

    CAS  PubMed  PubMed Central  Google Scholar 

  • Movafagh S, Crook S, Vo K (2015) Regulation of hypoxia-inducible factor-1a by reactive oxygen species: new developments in an old debate. J Cell Biochem 116(5):696–703

    CAS  PubMed  Google Scholar 

  • Ohl K, Tenbrock K, Kipp M (2016) Oxidative stress in multiple sclerosis: central and peripheral mode of action. Exp Neurol 277:58–67

    CAS  PubMed  Google Scholar 

  • Ortiz GG, Pacheco-Moises FP, Bitzer-Quintero OK, Ramírez-Anguiano AC, Flores-Alvarado LJ, Ramírez-Ramírez V, Macias-Islas MA, Torres-Sanchez ED (2013) Immunology and oxidative stress in multiple sclerosis: clinical and basic approach. Clin Dev Immunol. https://doi.org/10.1155/2013/708659

    Article  PubMed  PubMed Central  Google Scholar 

  • Papandreou I, Lim AL, Laderoute K, Denko NC (2008) Hypoxia signals autophagy in tumor cells via AMPK activity, independent of HIF-1, BNIP3, and BNIP3L. Cell Death Differ 15:1572–1581

    CAS  PubMed  Google Scholar 

  • Parzych KR, Klionsky DJ (2014) An overview of autophagy: morphology, mechanism, and regulation. Antioxid Redox Signal 20(3):460–473

    CAS  PubMed  PubMed Central  Google Scholar 

  • Peyssonnaux C, Cejudo-Martin P, Doedens A, Zinkernagel AS, Johnson RS, Nizet V (2007) Cutting edge: essential role of hypoxia inducible factor-1alpha in development of lipopolysaccharide-induced sepsis. J Immunol 178:7516–7519

    CAS  PubMed  Google Scholar 

  • Plaza-Zabala A, Sierra-Torre V, Sierra A (2017) Autophagy and microglia: novel partners in neurodegeneration and aging. Int J Mol Sci 18(3):598

    PubMed Central  Google Scholar 

  • Ravikumar B, Vacher C, Berger Z, Davies JE, Luo S, Oroz LG, Scaravilli F, Easton DF, Duden R, O’Kane CJ, Rubinsztein DC (2004) Inhibition of mTOR induces autophagy and reduces toxicity of polyglutamine expansions in fly and mouse models of Huntington disease. Nat Genet 36(6):585–595

    CAS  PubMed  Google Scholar 

  • Ravikumar B, Sarkar S, Davies JE, Futter M, Garcia-Arencibia M, Green-Thompson ZW, Jimenez-Sanchez M, Korolchuk VI, Lichtenberg M, Luo S, Massey DC (2010) Regulation of mammalian autophagy in physiology and pathophysiology. Physiol Rev 90(4):1383–1435

    CAS  PubMed  Google Scholar 

  • Rouschop KM, Van Den Beucken T, Dubois L, Niessen H, Bussink J, Savelkouls K, Keulers T, Mujcic H, Landuyt W, Voncken JW, Lambin P (2010) The unfolded protein response protectshuman tumor cells during hypoxia through regulation of theautophagy genes MAP1LC3B and ATG5. J Clin Investig 120:127–141

    CAS  PubMed  Google Scholar 

  • Rubinsztein DC (2006) The roles of intracellular protein-degradation pathways in neurodegeneration. Nature 443:780–786

    CAS  PubMed  Google Scholar 

  • Sanjuan MA, Dillon CP, Tait SW, Moshiach S, Dorsey F, Connell S, Komatsu M, Tanaka K, Cleveland JL, Withoff S, Green DR (2007) Toll-like receptor signalling in macrophages links the autophagy pathway to phagocytosis. Nature 450(7173):1253–1257

    CAS  PubMed  Google Scholar 

  • Sauer H, Wartenberg M, Hescheler J (2001) Reactive oxygen species as intracellular messengers during cell growth and differentiation. Cell Physiol Biochem 11(4):173–186

    CAS  PubMed  Google Scholar 

  • Schaaf MB, Cojocari D, Keulers TG, Jutten B, Starmans MH, de Jong MC, Begg AC, Savelkouls KG, Bussink J, Vooijs M, Wouters BG (2013) The autophagy associated gene, ULK1, promotes tolerance to chronic and acute hypoxia. Radiother Oncol 108:529–534

    CAS  PubMed  Google Scholar 

  • Scherz-Shouval R, Elazar Z (2007) ROS, mitochondria and the regulation of autophagy. Trends Cell Biol 17(9):422–427

    CAS  PubMed  Google Scholar 

  • Scherz-Shouval R, Elazar Z (2011) Regulation of autophagy by ROS: physiology and pathology. Trends Biochem Sci 36(1):30–38

    CAS  PubMed  Google Scholar 

  • Semenza GL (2000) HIF-1 and human disease: one highly involved factor. Genes Dev 14:1983–1991

    CAS  PubMed  Google Scholar 

  • Semenza GL (2011) Hypoxia-inducible factor 1: regulator of mitochondrial metabolism and mediator of ischemic preconditioning. Biochim Biophys Acta Mol Cell Res 1813(7):1263–1268

    CAS  Google Scholar 

  • Shaked I, Hanna RN, Shaked H, Chodaczek G, Nowyhed HN, Tweet G, Tacke R, Basat AB, Mikulski Z, Togher S, Miller J (2015) Transcription factor Nr4a1 couples sympathetic and inflammatory cues in CNS-recruited macrophages to limit neuroinflammation. Nat Immunol 16(12):1228–1234

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shefa U, Jeong NY, Song IO, Chung HJ, Kim D, Jung J, Huh Y (2019) Mitophagy links oxidative stress conditions and neurodegenerative diseases. Neural Regen Res 14(5):749

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shiri E, Pasbakhsh P, Borhani-Haghighi M, Alizadeh Z, Nekoonam S, Mojaverrostami S, Mahabadi VP, Mehdi A, Zibara K, Kashani IR (2020) Mesenchymal stem cells ameliorate cuprizone-induced demyelination by targeting oxidative stress and mitochondrial dysfunction. Cell Mol Neurobiol 27:1–5

    Google Scholar 

  • Thiel M, Caldwell CC, Kreth S, Kuboki S, Chen P, Smith P, Ohta A, Lentsch AB, Lukashev D, Sitkovsky MV (2007) Targeted deletion of HIF-1 alpha gene in T cells prevents their inhibition in hypoxic inflamed tissues and improves septic mice survival. PLoS ONE 2:e853

    PubMed  PubMed Central  Google Scholar 

  • Tormos KV, Chandel NS (2010) Inter-connection between mitochondria and HIFs. J Cell Mol Med 14(4):795–804

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tung YT, Wang BJ, Hu MK, Hsu WM, Lee H, Huang WP, Liao YF (2012) Autophagy: a double-edged sword in Alzheimer’s disease. J Biosci 37(1):157–165

    CAS  PubMed  Google Scholar 

  • Ureshino RP, Rocha KK, Lopes GS, Bincoletto C, Smaili SS (2014) Calcium signaling alterations, oxidative stress, and autophagy in aging. Antioxid Redox Signal 21(1):123–137

    CAS  PubMed  Google Scholar 

  • Uurlink BHJ (2013) The evidence for Hypoperfusion as a factor in multiplesclerosis lesion development. Mult Scler Int 2013:6

    Google Scholar 

  • Van Horssen J, Witte ME, Schreibelt G, de Vries HE (2011) Radical changes in multiple sclerosis pathogenesis. Biochem Biophys Acta 1812(2):141–150

    PubMed  Google Scholar 

  • Vangeison G, Carr D, Federoff HJ, Rempe DA (2008) The good, the bad, and the cell type-specific roles of hypoxia inducible factor-1 alpha in neurons and astrocytes. J Neurosci 28:1988–1993

    CAS  PubMed  PubMed Central  Google Scholar 

  • Walmsley SR, Print C, Farahi N (2005) Hypoxia-induced neutrophil survival is mediated by HIF-1alpha-dependent NF-kappaB activity. J Exp Med 201:105–115

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang JL, Xu CJ (2020) Astrocytes autophagy in aging and neurodegenerative disorders. Biomed Pharmacother 122:109691

    CAS  PubMed  Google Scholar 

  • Weidemann A, Kerdiles YM, Knaup KX, Rafie CA, Boutin AT, Stockmann C, Takeda N, Scadeng M, Shih AY, Haase VH, Simon MC (2009) The glial cell response is an essential component of hypoxia-induced erythropoiesis in mice. J Clin Investig 119:3373–3383

    CAS  PubMed  PubMed Central  Google Scholar 

  • Williams H, Johnson JL, Jackson CL, White SJ, George SJ (2010) MMP-7 mediates cleavage of N-cadherin and promotes smooth muscle cell apoptosis. Cardiovasc Res 87:137–146

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wouters BG, Koritzinsky M (2008) Hypoxia signalling throughmTOR and the unfolded protein response in cancer. Nat Rev Cancer 8:851–864

    CAS  PubMed  Google Scholar 

  • Yang R, Dunn JF (2019) Multiple sclerosis disease progression: contributions from a hypoxia–inflammation cycle. Mult Scler J 25(13):1715–1718

    CAS  Google Scholar 

  • Yang Z, Klionsky DJ (2009) An overview of the molecular mechanism of autophagy. Curr Top MicrobiolImmunol 335:1–32

    CAS  Google Scholar 

  • Yang Z, Goronzy JJ, Weyand CM (2015) Autophagy in autoimmune disease. J Mol Med 93(7):707–717

    CAS  PubMed  Google Scholar 

  • Yorimitsu T, Klionsky DJ (2005) Autophagy: molecular machinery for self-eating. Cell Death Differ 12(2):1542–1552

    CAS  PubMed  Google Scholar 

  • Yoshida Y, Yoshimi R, Yoshii H, Kim D, Dey A, Xiong H, Munasinghe J, Yazawa I, O’Donovan MJ, Maximova OA, Sharma S (2014) The transcription factor IRF8 activates integrin-mediated TGF-β signaling and promotes neuroinflammation. Immunity 40(2):187–198

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zeis T, Graumann U, Reynolds R, Schaeren-Wiemers N (2008) Normal-appearing white matter in multiple sclerosis is in a subtle balance between inflammation and neuroprotection. Brain 131:288–303

    PubMed  Google Scholar 

  • Zhang H, Bosch-Marce M, Shimoda LA, Tan YS, Baek JH, Wesley JB, Gonzalez FJ, Semenza GL (2008) Mitochondrial autophagy is an HIF-1-dependent adaptive metabolic response to hypoxia. J Biol Chem 283(16):10892–10903

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zheng L, Xue Q, Ni J, Guo S, Dong W (2014) Levels of Beclin 1 and LC3 in peripheral blood mononuclear cells of patients with multiple sclerosis and neuromyelitisoptica and its significance. Zhonghuayixuezazhi 94(39):3052–3055

    CAS  Google Scholar 

  • Zou J, Crews F (2006) CREB and NF-κB transcription factors regulate sensitivity to excitotoxic and oxidative stress induced neuronal cell death. Cell Mol Neurobiol 26(4):383–403

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

RA and MSEA designed the structure of the manuscript. RA, MSEA, RY, and PM drafted the manuscript. RA, MSEA, RY, and PM finalized the paper. All authors approved the final version of the manuscript.

Corresponding author

Correspondence to Mohammad Sajad Emami Aleagha.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Informed Consent

No informed consent is needed.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Asgari, R., Yarani, R., Mohammadi, P. et al. HIF-1α in the Crosstalk Between Reactive Oxygen Species and Autophagy Process: A Review in Multiple Sclerosis. Cell Mol Neurobiol 42, 2121–2129 (2022). https://doi.org/10.1007/s10571-021-01111-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10571-021-01111-5

Keywords

Navigation