Skip to main content
Log in

Decreased Expression of Synaptophysin 1 (SYP1 Major Synaptic Vesicle Protein p38) and Contactin 6 (CNTN6/NB3) in the Cerebellar Vermis of reln Haplodeficient Mice

  • Original Research
  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Reeler heterozygous mice (reln+/) are seemingly normal but haplodeficient in reln, a gene implicated in autism. Structural/neurochemical alterations in the reln+/ brain are subtle and difficult to demonstrate. Therefore, the usefulness of these mice in translational research is still debated. As evidence implicated several synapse-related genes in autism and the cerebellar vermis is structurally altered in the condition, we have investigated the expression of synaptophysin 1 (SYP1) and contactin 6 (CNTN6) within the vermis of reln+/ mice. Semi-thin plastic sections of the vermis from adult mice of both sexes and different genotypes (reln+/ and reln+/+) were processed with an indirect immunofluorescence protocol. Immunofluorescence was quantified on binary images and statistically analyzed. Reln+/ males displayed a statistically significant reduction of 11.89% in the expression of SYP1 compared to sex-matched wild-type animals, whereas no differences were observed between reln+/+ and reln+/ females. In reln+/− male mice, reductions were particularly evident in the molecular layer: 10.23% less SYP1 than reln+/+ males and 5.84% < reln+/+ females. In reln+/− females, decrease was 9.84% versus reln+/+ males and 5.43% versus reln+/+ females. Both reln+/ males and females showed a stronger decrease in CNTN6 expression throughout all the three cortical layers of the vermis: 17–23% in the granular layer, 24-26% in the Purkinje cell layer, and 9–14% in the molecular layer. Altogether, decrease of vermian SYP1 and CNTN6 in reln+/ mice displayed patterns compatible with the structural modifications of the autistic cerebellum. Therefore, these mice may be a good model in translational studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

BSA:

Bovine serum albumin

CI:

Confidence interval

CNTN6:

Contactin 6

DAPI:

4′,6-diamidino-2-phenylindole

GL:

Granular layer of the cerebellar cortex

HET:

Heterozygous

IQ:

Intelligence quotient

ML:

Molecular layer of the cerebellar cortex

NGS:

Normal goat serum

PFA:

Percentage of the fluorescent area

PF-PN:

Parallel fiber-to-Purkinje neuron

PL:

Purkinje cells’ layer of the cerebellar cortex

PPI:

Pre-pulse inhibition

RELN :

Reelin gene (human)

RELN:

Reelin glycoprotein (human)

Reln :

Reelin gene (mouse)

Reln:

Reelin glycoprotein (mouse)

ROI:

Region of interest

sMRI:

Structural magnetic resonance imaging

SYP1:

Synaptophysin 1

WT:

Wild-type

References

  • Abel JM, Witt DM, Rissman EF (2011) Sex differences in the cerebellum and frontal cortex: roles of estrogen receptor alpha and sex chromosome genes. Neuroendocrinology 93(4):230–240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ago Y, Condro MC, Tan YV, Ghiani CA, Colwell CS, Cushman JD, Fanselow MS, Hashimoto H, Waschek JA (2015) Reductions in synaptic proteins and selective alteration of prepulse inhibition in male C57BL/6 mice after postnatal administration of a VIP receptor (VIPR2) agonist. Psychopharmacology 232(12):2181–2189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Andersen TE, Finsen B, Goffinet AM, Issinger OG, Boldyreff B (2002) A reeler mutant mouse with a new, spontaneous mutation in the reelin gene. Mol Brain Res 105(1–2):153–156

    Article  CAS  PubMed  Google Scholar 

  • Anderson GR, Galfin T, Xu W, Aoto J, Malenka RC, Südhof TC (2012) Candidate autism gene screen identifies critical role for cell-adhesion molecule CASPR2 in dendritic arborization and spine development. Proc Natl Acad Sci USA 109(44):18120–18125

    Article  PubMed  Google Scholar 

  • Azevedo Frederico AC, Carvalho Ludmila RB, Grinberg LT, Farfel JM, Ferretti Renata EL, Leite Renata EP et al (2009) Equal numbers of neuronal and nonneuronal cells make the human brain an isometrically scaled-up primate brain. J Comp Neurol 513(5):532–541

    Article  CAS  PubMed  Google Scholar 

  • Barnes SA, Wijetunge LS, Jackson AD, Katsanevaki D, Osterweil EK, Komiyama NH, Grant SG, Bear MF, Nägerl UV, Kind PC, Wyllie DJ (2015) Convergence of Hippocampal Pathophysiology in Syngap ± and Fmr1-/y Mice. J Neurosci 35(45):15073–15081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barr AM, Fish KN, Markou A, Honer WG (2008) Heterozygous reeler mice exhibit alterations in sensorimotor gating but not presynaptic proteins. Eur J Neurosci 27(10):2568–2574

    Article  PubMed  Google Scholar 

  • Bauman ML (1991) Microscopic neuroanatomic abnormalities in autism. Pediatrics 87(5 Pt 2):791–796

    CAS  PubMed  Google Scholar 

  • Bauman M, Kemper TL (1985) Histoanatomic observations of the brain in early infantile autism. Neurol 35(6):866–874

    Article  CAS  Google Scholar 

  • Berglund EO, Murai K, Fredette B, Sekerkov G, Marturano B, Weber L, Mugnaini E, Ranscht B (1999) Ataxia and abnormal cerebellar microorganization in mice with ablated contactin gene expression. Neuron 24:739–750

    Article  CAS  PubMed  Google Scholar 

  • Berryer MH, Hamdan FF, Klitten LL, Møller RS, Carmant L, Schwartzentruber J, Patry L, Dobrzeniecka S, Rochefort D, Neugnot-Cerioli M, Lacaille JC, Niu Z, Eng CM, Yang Y, Palardy S, Belhumeur C, Rouleau GA, Tommerup N, Immken L, Beauchamp MH, Patel GS, Majewski J, Tarnopolsky MA, Scheffzek K, Hjalgrim H, Michaud JL, Di Cristo G (2013) Mutations in SYNGAP1 cause intellectual disability, autism, and a specific form of epilepsy by inducing haploinsufficiency. Hum Mutat 34:385–394

    Article  CAS  PubMed  Google Scholar 

  • Bey AL, Jiang YH (2014) Overview of mouse models of autism spectrum disorders. Curr Protoc Pharmacol 66:5–26

    PubMed  PubMed Central  Google Scholar 

  • Biamonte F, Assenza G, Marino R, D’Amelio M, Panteri R, Caruso D et al (2009) Interactions between neuroactive steroids and reelin haploinsufficiency in Purkinje cell survival. Neurobiol Dis 36(1):103–115

    Article  CAS  PubMed  Google Scholar 

  • Bobée S, Mariette E, Tremblay-Leveau H, Caston J (2000) Effects of early midline cerebellar lesion on cognitive and emotional functions in the rat. Behav Brain Res 112(1):107–117

    Article  PubMed  Google Scholar 

  • Brigman JL, Padukiewicz KE, Sutherland ML, Rothblat LA (2006) Executive functions in the heterozygous reeler mouse model of schizophrenia. Behav Neurosci 120(4):984–988

    Article  PubMed  Google Scholar 

  • Brorson SH, Roos N, Skjorten F (1994) Antibody penetration into LR-White sections. Micron 25(5):453–460

    Article  CAS  PubMed  Google Scholar 

  • Burgoyne RD, Barclay JW (2002) Splitting the quantum: regulation of quantal release during vesicle fusion. Trends Neurosci 25(4):176–178

    Article  CAS  PubMed  Google Scholar 

  • Castagna C, Aimar P, Alasia S, Lossi L (2014) Post-natal development of the Reeler mouse cerebellum: an ultrastructural study. Ann Anat 196(4):224–235

    Article  PubMed  Google Scholar 

  • Castagna C, Merighi A, Lossi L (2016) Cell death and neurodegeneration in the postnatal development of cerebellar vermis in normal and Reeler mice. Ann Anat 207:76–90

    Article  PubMed  Google Scholar 

  • Caston J, Yon E, Mellier D, Godfrey HP, Delhaye-Bouchaud N, Mariani J (2003) An animal model of autism: behavioural studies in the GS guinea-pig. Eur J Neurosci 10(8):2677–2684

    Article  Google Scholar 

  • Catani M, Dell’acqua F, Thiebaut de Schotten M (2013) A revised limbic system model for memory, emotion and behaviour. Neurosci Biobehav Rev 37(8):1724–1737

    Article  PubMed  Google Scholar 

  • Caviness VS, Rakic P (1978) Mechanisms of cortical development: a view from mutations in mice. Annu Rev Neurosci 1(1):297–326

    Article  PubMed  Google Scholar 

  • Chavis P, Mollard P, Bockaert J, Manzoni O (1998) Visualization of cyclic AMP-regulated presynaptic activity at cerebellar granule cells. Neuron 20(4):773–781

    Article  CAS  PubMed  Google Scholar 

  • Clipperton-Allen AE, Page DT (2014) Pten haploinsufficient mice show broad brain overgrowth but selective impairments in autism-relevant behavioral tests. Hum Mol Genet 23:3490–3505

    Article  CAS  PubMed  Google Scholar 

  • Codagnone MG, Podestá MF, Uccelli NA, Reinés A (2015) Differential local connectivity and neuroinflammation profiles in the medial prefrontal cortex and hippocampus in the valproic acid rat model of autism. Dev Neurosci 37(3):215–231

    Article  CAS  PubMed  Google Scholar 

  • Courchesne E, Yeung-Courchesne R, Hesselink JR, Jernigan TL (1988) Hypoplasia of cerebellar vermal lobules VI and VII in autism. New Engl J Med 318(21):1349–1354

    Article  CAS  PubMed  Google Scholar 

  • Courchesne E, Saitoh O, Yeung-Courchesne R, Press GA, Lincoln AJ, Haas RH, Schreibman L (1994) Abnormality of cerebellar vermian lobules VI and VII in patients with infantile autism: identification of hypoplastic and hyperplastic subgroups with MR imaging. AJR Am J Roentgenol 162(1):123–130

    Article  CAS  PubMed  Google Scholar 

  • Cousin MA, Evans G (2011) Activation of silent and weak synapses by cAMP-dependent protein kinase in cultured cerebellar granule neurons. J Physiol 589(Pt 8):1943–1955

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cupolillo D, Hoxha E, Faralli A, De Luca A, Rossi F, Tempia F, Carulli D (2016) Autistic-like traits and cerebellar dysfunction in Purkinje cell PTEN knock-out mice. Neuropsychopharmacol 41(6):1457–1466

    Article  Google Scholar 

  • D’Arcangelo G, Miao GG, Chen SC, Soares HD, Morgan JI, Curran T (1995) A protein related to extracellular matrix proteins deleted in the mouse mutant reeler. Nature 374(6524):719–723

    Article  PubMed  Google Scholar 

  • D’Arcangelo G, Miao GG, Curran T (1996) Detection of the reelin breakpoint in reeler mice. Brain Res Mol Brain Res 39(1–2):234–236

    Article  PubMed  Google Scholar 

  • Dean SL, McCarthy MM (2008) Steroids, sex and the cerebellar cortex: implications for human disease. Cerebellum 7(1):38–47

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • DeSilva U, D’Arcangelo G, Braden VV, Chen J, Miao GG, Curran T et al (1997) The human reelin gene: isolation, sequencing and mapping on chromosome 7. Genome Res 7(2):157–164

    Article  CAS  PubMed  Google Scholar 

  • D’Mello AM, Stoodley CJ (2015) Cerebro-cerebellar circuits in autism spectrum disorder. Front Neurosci 9:408

    PubMed  PubMed Central  Google Scholar 

  • D’Mello AM, Crocetti D, Mostofsky SH, Stoodley CJ (2015) Cerebellar gray matter and lobular volumes correlate with core autism symptoms. Neuroimage Clin 7:631–639

    Article  PubMed  PubMed Central  Google Scholar 

  • Ecker C, Spooren W, Murphy DG (2013) Translational approaches to the biology of Autism: false dawn or a new era? Mol Psychiatry 18(4):435–442

    Article  CAS  PubMed  Google Scholar 

  • Ekerot CF, Jörntell H (2001) Parallel fibre receptive fields of Purkinje cells and interneurons are climbing fibre-specific. Eur J Neurosci 13:1303–1310

    Article  CAS  PubMed  Google Scholar 

  • Ekerot CF, Jörntell H (2003) Parallel fibre receptive fields: a key to understanding cerebellar operation and learning. Cerebellum 2:101–109

    Article  PubMed  Google Scholar 

  • Falconer DS (1951) Two new mutants, ‘trembler’ and ‘reeler’, with neurological actions in the house mouse (Mus musculus L.). J Genet 50:192–201

    Article  CAS  PubMed  Google Scholar 

  • Falk J, Bonnon C, Girault J-A, Faivre-Sarrailh C (2002) F3/contactin, a neuronal cell adhesion molecule implicated in axogenesis and myelination. Biol Cell 94:327–334

    Article  CAS  PubMed  Google Scholar 

  • Fassio A, Patry L, Congia S, Onofri F, Piton A, Gauthier J, Pozzi D, MessaM Defranchi E, FaddaM Corradi A, Baldelli P, Lapointe L, St-Onge J, Meloche C, Mottron I, Valtorta F, Nguyen D, Rouleau G, Benfenati F, Cossette P (2011) SYN1 loss-of-function mutations in autism and partial epilepsy cause impaired synaptic function. Hum Mol Genet 20(12):2297–2307

    Article  CAS  PubMed  Google Scholar 

  • Fatemi SH (2005) Reelin glycoprotein in autism and schizophrenia. Int Rev Neurobiol 71:179–187

    Article  CAS  PubMed  Google Scholar 

  • Fatemi SH, Stary JM, Halt AR, Realmuto GR (2001) Dysregulation of Reelin and Bcl-2 proteins in autistic cerebellum. J Autism Dev Disord 31(6):529–535

    Article  CAS  PubMed  Google Scholar 

  • Fatemi SH, Aldinger KA, Ashwood P, Bauman ML, Blaha CD, Blatt GJ et al (2012) Consensus paper: pathological role of the cerebellum in autism. Cerebellum 11(3):777–807

    Article  PubMed  PubMed Central  Google Scholar 

  • Fykse EM, Takei K, Walch-Solimena C, Geppert M, Jahn R, De Camilli P, Südhof TC (1993) Relative properties and localizations of synaptic vesicle protein isoforms: the case of the synaptophysins. J Neurosci 13(11):4997–5007

    Article  CAS  PubMed  Google Scholar 

  • Gdalyahu A, Lazaro M, Penagarikano O, Golshani P, Trachtenberg JT, Gescwind DH (2015) The autism related protein contactin-associated protein-like 2 (CNTNAP2) stabilizes new spines: an in vivo mouse study. PLoS ONE 10:e0125633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Geyer MA (2008) Developing translational animal models for symptoms of schizophrenia or bipolar mania. Neurotox Res 14(1):71–78

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Giza J, Urbanski MJ, Prestori F, Bandyopadhyay B, Yam A, Friedrich V, Kelley K, D’Angelo E, Goldfarb M (2010) Behavioral and cerebellar transmission deficits in mice lacking the autism-linked gene islet brain-2. J Neurosci 30(44):14805–14816

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goffinet AM (1984) Events governing organization of postmigratory neurons: studies on brain development in normal and reeler mice. Brain Res Rev 7(3):261–296

    Article  Google Scholar 

  • Greco B, Managò F, Tucci V, Kao HT, Valtorta F, Benfenati F (2013) Autism-related behavioral abnormalities in synapsin knockout mice. Behav Brain Res 251:65–74

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hadj-Sahraoui N, Frédéric F, Delhaye-Bouchaud N, Mariani J (1996) Gender Effect on Purkinje Cell Loss in the Cerebellum of the Heterozygous Reeler Mouse. J Neurogenet 11(1–2):45–58

    Article  CAS  PubMed  Google Scholar 

  • Halko MA, Farzan F, Eldaief MC, Schmahmann JD, Pascual-Leone A (2014) Intermittent Theta-Burst Stimulation of the Lateral Cerebellum Increases Functional Connectivity of the Default Network. J Neurosci 34(36):12049–12056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Halladay AK, Amaral D, Aschner M, Bolivar VJ, Bowman A, DiCicco-Bloom E et al (2009) Animal models of autism spectrum disorders: information for neurotoxicologists. NeuroToxicol 30(5):811–821

    Article  CAS  Google Scholar 

  • Hansel C, Linden DJ, D’Angelo E (2001) Beyond parallel fiber LTD: the diversity of synaptic and non-synaptic plasticity in the cerebellum. Nat Neurosci 4(5):467–475

    Article  CAS  PubMed  Google Scholar 

  • Herculano-Houzel S (2010) Coordinated scaling of cortical and cerebellar numbers of neurons. Front Neuroanat. 10(4):12

    Google Scholar 

  • Holroyd S, Reiss AL, Bryan RN (1991) Autistic features in Joubert syndrome: a genetic disorder with agenesis of the cerebellar vermis. Biol Psychiatry 29(3):287–294

    Article  CAS  PubMed  Google Scholar 

  • Hong SE, Shugart YY, Huang DT, Shahwan SA, Grant PE, Hourihane JO et al (2000) Autosomal recessive lissencephaly with cerebellar hypoplasia is associated with human RELN mutations. Nat Genet 26(1):93–96

    Article  CAS  PubMed  Google Scholar 

  • Hu J, Liao J, Sathanoori M, Kochmar S, Sebastian J, Yatsenko SA, Surti U (2015) CNTN6 copy number variations in 14 patients: a possible candidate gene for neurodevelopmental and neuropsychiatric disorders. J Neurodev Disord 7(1):26. https://doi.org/10.1186/s11689-015-9122-9

    Article  PubMed  PubMed Central  Google Scholar 

  • Isshiki M, Tanaka S, Kuriu T, Tabuchi K, Takumi T, Okabe S (2014) Enhanced synapse remodelling as a common phenotype in mouse models of autism. Nat Commun. 5:4742. https://doi.org/10.1038/ncomms5742

    Article  CAS  PubMed  Google Scholar 

  • James SJ, Shpyleva S, Melnyk S, Pavliv O, Pogribny IP (2013) Complex epigenetic regulation of engrailed-2 (EN-2) homeobox gene in the autism cerebellum. Transl Psychiatry 3:e232. https://doi.org/10.1038/tp.2013.8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Keller R, Basta R, Salerno L, Elia M (2017) Autism, epilepsy, and synaptopathies: a not rare association. Neurol Sci 38(8):1353–1361

    Article  Google Scholar 

  • Kemper TL, Bauman M (1998) Neuropathology of infantile autism. J Neuropathol Exp Neurol 57(7):645–652

    Article  CAS  PubMed  Google Scholar 

  • Kim KC, Choi CS, Gonzales ELT, Mabunga DFN, Lee SH, Jeon SJ, Hwangbo R, Hong M, Ryu JH, Han SH, Bahn GH, Shin CY (2017) Valproic acid induces telomerase reverse transcriptase expression during cortical development. Exp Neurobiol 26(5):252–265

    Article  PubMed  PubMed Central  Google Scholar 

  • Krueger DD, Howell JL, Hebert BF, Olausson P, Taylor JR, Nairn AC (2006) Assessment of cognitive function in the heterozygous reeler mouse. Psychopharmacology 189(1):95–104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuemerle B, Gulden F, Cherosky N, Williams E, Herrup K (2007) The mouse engrailed genes: a window into autism. Behav Brain Res 176(1):121–132

    Article  CAS  PubMed  Google Scholar 

  • Lammert DB, Howell BW (2016) RELN mutations in autism spectrum disorder. Front Cell Neurosci 10:84. https://doi.org/10.3389/fncel.2016.00084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Limperopoulos C, Bassan H, Gauvreau K, Robertson RL Jr, Sullivan NR, Benson CB et al (2007) Does cerebellar injury in premature infants contribute to the high prevalence of long-term cognitive, learning, and behavioral disability in survivors? Pediatrics 120(3):584–593

    Article  PubMed  Google Scholar 

  • Magliaro C, Cocito C, Bagatella S, Merighi A, Ahluwalia A, Lossi L (2016) The number of Purkinje neurons and their topology in the cerebellar vermis of normal and reln haplodeficient mouse. Ann Anat 207:68–75

    Article  PubMed  Google Scholar 

  • Maloku E, Covelo IR, Hanbauer I, Guidotti A, Kadriu B, Hu Q et al (2010) Lower number of cerebellar Purkinje neurons in psychosis is associated with reduced reelin expression. Proc Natl Acad Sci USA 107(9):4407–4411

    Article  PubMed  Google Scholar 

  • Mar AC, Walker ALJ, Theobald DE, Eagle DM, Robbins TW (2011) Dissociable effects of lesions to orbitofrontal cortex subregions on impulsive choice in the rat. J Neurosci 31(17):6398–6404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mariani J, Crepel F, Mikoshiba K, Changeux JP, Sotelo C (1977) Anatomical, physiological and biochemical studies of the cerebellum from reeler mutant mouse. Philos Trans R Soc Lond B Biol Sci 281(978):1–28

    Article  CAS  PubMed  Google Scholar 

  • Marrone MC, Marinelli S, Biamonte F, Keller F, Sgobio CA, Ammassari-Teule M et al (2006) Altered cortico-striatal synaptic plasticity and related behavioural impairments in reeler mice. Eur J Neurosci 24(7):2061–2070

    Article  PubMed  Google Scholar 

  • Matsushita M, Okado N (1981) Spinocerebellar projections to lobules I and II of the anterior lobe in the cat, as studied by retrograde transport of horseradish peroxidase. J Comp Neurol 197(3):411–424

    Article  CAS  PubMed  Google Scholar 

  • McConnell SK (1995) Strategies for the generation of neuronal diversity in the developing central nervous system. J Neurosci 15(11):6987–6998

    Article  CAS  PubMed  Google Scholar 

  • Mercati O, Huguet G, Danckaert A, André-Leroux G, Maruani A, Bellinzoni M, Rolland T, Gouder L, Mathieu A, Buratti J, Amsellem F, Benabou M, Van-Gils J, Beggiato A, Konyukh M, Bourgeois JP, Gazzellone MJ, Yuen RK, Walker S, Delépine M, Boland A, Régnault B, Francois M, Van Den Abbeele T, Mosca-Boidron AL, Faivre L, Shimoda Y, Watanabe K, Bonneau D, Rastam M, Leboyer M, Scherer SW, Gillberg C, Delorme R, Cloëz-Tayarani I, Bourgeron T (2017) CNTN6 mutations are risk factors for abnormal auditory sensory perception in autism spectrum disorders. Mol Psychiatry 22(4):625–633

    Article  CAS  PubMed  Google Scholar 

  • Mercer AA, Palarz KJ, Tabatadze N, Woolley CS, Raman IM (2016) Sex differences in cerebellar synaptic transmission and sex-specific responses to autism-linked Gabrb3 mutations in mice. Elife 5:e07596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Merighi A (2018) Costorage of high molecular weight neurotransmitters in large dense core vesicles of mammalian neurons. Front Cell Neurosci 12:272. https://doi.org/10.3389/fncel.2018.00272

    Article  PubMed  PubMed Central  Google Scholar 

  • Michetti C, Romano E, Altabella L, Caruso A, Castelluccio P, Bedse G et al (2014) Mapping pathological phenotypes in reelin mutant mice. Front Pediatr 2:95

    Article  PubMed  PubMed Central  Google Scholar 

  • Miles JH (2011) Autism spectrum disorders–a genetics review. Genet Med 13(4):278–294

    Article  PubMed  Google Scholar 

  • Monteiro P, Feng G (2017) SHANK proteins: roles at the synapse and in autism spectrum disorder. Nat Rev Neurosci 18(3):147–157

    Article  CAS  PubMed  Google Scholar 

  • Morimura N, Yasuda H, Yamaguchi K, Katayama KI, Hatayama M, Tomioka NH, Odagawa M, Kamiya A, Iwayama Y, Maekawa M, Nakamura K, Matsuzaki H, Tsujii M, Yamada K, Yoshikawa T, Aruga J (2017) Autism-like behaviours and enhanced memory formation and synaptic plasticity in Lrfn2/SALM1-deficient mice. Nat Commun 8:15800. https://doi.org/10.1038/ncomms15800

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murashima M, Hirano T (1999) Entire Course and Distinct Phases of Day-Lasting Depression of Miniature EPSC Amplitudes in Cultured Purkinje Neurons. J Neurosci 19(17):7326

    Article  CAS  PubMed  Google Scholar 

  • Navone F, Jahn R, Di Gioia G, Stukenbrok H, Greengard P, De Camilli P (1986) Protein p38: an integral membrane protein specific for small vesicles of neurons and neuroendocrine cells. J Cell Biol 103:2511–2527

    Article  CAS  PubMed  Google Scholar 

  • Ognibene E, Adriani W, Granstrem O, Pieretti S, Laviola G (2007) Impulsivity-anxiety-related behavior and profiles of morphine-induced analgesia in heterozygous reeler mice. Brain Res 1131:173–180

    Article  CAS  PubMed  Google Scholar 

  • Oguro-Ando A, Zuko A, Kleijer KTE, Burbach JPH (2017) A current view on contactin-4, -5, and -6: implications in neurodevelopmental disorders. Mol Cell Neurosci 81:72–83

    Article  CAS  PubMed  Google Scholar 

  • O’Reilly JX, Beckmann CF, Tomassini V, Ramnani N, Johansen-Berg H (2010) Distinct and overlapping functional zones in the cerebellum defined by resting state functional connectivity. Cereb Cortex 20(4):953–965

    Article  PubMed  Google Scholar 

  • Peça J, Feliciano C, Ting G, Wang W, Wells M, Venkatramou T, Lascola C, Fu Z, Feng G (2011) Shank3 mutant mice display autistic-like behaviours and striatal dysfunction. Nature 472(7344):437–442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Podhorna J, Didriksen M (2004) The heterozygous reeler mouse: behavioural phenotype. Behav Brain Res 153(1):43–54

    Article  CAS  PubMed  Google Scholar 

  • Provenzano G, Pangrazzi L, Poli A, Sgadò P, Berardi N, Bozzi Y (2015) Reduced phosphorylation of synapsin I in the hippocampus of Engrailed-2 knockout mice, a model for autism spectrum disorders. Neurosci 286:122–130

    Article  CAS  Google Scholar 

  • Robertson HR, Feng G (2011) Annual Research Review: transgenic mouse models of childhood-onset psychiatric disorders. J Child Psychol Psychiatry 52(4):442–475

    Article  PubMed  PubMed Central  Google Scholar 

  • Sakurai K, Toyoshima M, Ueda H, Matsubara K, Takeda Y, Karagogeos D, ShimodaY Watanabe K (2009) Contribution of the neural cell recognition molecule NB-3 to synapse formation between parallel fibers and Purkinje cells in mouse. Dev Neurobiol 69(12):811–824

    Article  CAS  PubMed  Google Scholar 

  • Salinger WL, Ladrow P, Wheeler C (2003) Behavioral phenotype of the reeler mutant mouse: effects of RELN gene dosage and social isolation. Behav Neurosci 117(6):1257–1275

    Article  PubMed  Google Scholar 

  • Schlerf JE, Galea JM, Spampinato D, Celnik PA (2015) Laterality differences in cerebellar-motor cortex connectivity. Cereb Cortex 25(7):1827–1834

    Article  PubMed  Google Scholar 

  • Schmahmann JD, Weilburg JB, Sherman JC (2007) The neuropsychiatry of the cerebellum—insights from the clinic. Cerebellum 6(3):254–267

    Article  PubMed  Google Scholar 

  • Schmitt U, Tanimoto N, Seeliger M, Schaeffel F, Leube RE (2009) Detection of behavioral alterations and learning deficits in mice lacking synaptophysin. Neurosci 162(2):234–243

    Article  CAS  Google Scholar 

  • Schmitt A, Turck CW, Pilz PK, Malchow B, von WM, Falkai P et al (2013) Proteomic similarities between heterozygous reeler mice and schizophrenia. Biol Psychiatry 74(6):e5–e10

    Article  CAS  PubMed  Google Scholar 

  • Shinoda Y, Sadakata T, Nakao K, Katoh-Semba R, Kinameri E, Furuya A, Yanagawa Y, Hirase H, Furuichi T (2011) Calcium-dependent activator protein for secretion 2 (CAPS2) promotes BDNF secretion and is critical for the development of GABAergic interneuron network. Proc Natl Acad Sci USA 108:373–378

    Article  PubMed  Google Scholar 

  • Shinoda Y, Sadakata T, Furuichi T (2013) Animal models of autism spectrum disorder (ASD): a synaptic-level approach to autistic-like behavior in mice. Exp Anim 62(2):71–78

    Article  CAS  PubMed  Google Scholar 

  • Soiza-Reilly M (2015) Array tomography: a novel high-resolution immunofluorescence Technique. In: Merighi A, Lossi L (eds) Immunocytochemistry and related techniques Neuromethods, vol 101. Humana Press, New York, pp 377–388

    Chapter  Google Scholar 

  • Stanfield AC, McIntosh AM, Spencer MD, Philip R, Gaur S, Lawrie SM (2008) Towards a neuroanatomy of autism: a systematic review and meta-analysis of structural magnetic resonance imaging studies. E Psychiatry 23(4):289–299

    Article  Google Scholar 

  • St-Laurent M, Petrides M (2009) Sziklas V (2009) Does the cingulate cortex contribute to spatial conditional associative learning in the rat? Hippocampus 19(7):612–622

    Article  PubMed  Google Scholar 

  • Stoeckli ET (2010) Neural circuit formation in the cerebellum is controlled by cell adhesion molecules of the c ontactin family. Cell Adh Migr 4(4):523–526

    Article  PubMed  PubMed Central  Google Scholar 

  • Stoodley CJ (2014) Distinct regions of the cerebellum show gray matter decreases in autism, ADHD, and developmental dyslexia. Front Syst Neurosci 8:92

    Article  PubMed  PubMed Central  Google Scholar 

  • Stoodley CJ, Schmahmann JD (2010) Evidence for topographic organization in the cerebellum of motor control versus cognitive and affective processing. Cortex 46(7):831–844

    Article  PubMed  PubMed Central  Google Scholar 

  • Sundberg M, Tochitsky I, Buchholz DE, Winden K, Kujala V, Kapur K, Cataltepe D, Turner D, Han MJ, Woolf CJ, Hatten ME, Sahin M (2018) Purkinje cells derived from TSC patients display hypoexcitability and synaptic deficits associated with reduced FMRP levels and reversed by rapamycin. Mol Psychiatry 23(11):2167–2183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suzuki L, Coulon P, Sabel-Goedknegt EH (2012) Ruigrok TJ (2012) Organization of cerebral projections to identified cerebellar zones in the posterior cerebellum of the rat. J Neurosci 32(32):10854–10869

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tarsa L, Goda Y (2002) Synaptophysin regulates activity-dependent synapse formation in cultured hippocampal neurons. Proc Natl Acad Sci USA 99(2):1012–1016

    Article  CAS  PubMed  Google Scholar 

  • Teixeira CM, Martín ED, Sahún I, Masachs N, Pujadas L, Corvelo A et al (2011) Overexpression of reelin prevents the manifestation of behavioral phenotypes related to schizophrenia and bipolar disorder. Neuropsychopharmacology 36(12):2395–2405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thiel G (1993) Synapsin I, synapsin II, and synaptophysin: marker proteins of synaptic vesicles. Brain Pathol 3(1):87–95

    Article  CAS  PubMed  Google Scholar 

  • Tissir F, Goffinet AM (2003) Reelin and brain development. Nat Rev Neurosci 4(6):496–505

    Article  CAS  PubMed  Google Scholar 

  • Tsai PT (2016) Autism and cerebellar dysfunction: evidence from animal models. Semin Fet Neonat Med 21(5):349–355

    Article  Google Scholar 

  • Tueting P, Costa E, Dwivedi Y, Guidotti A, Impagnatiello F, Manev R et al (1999) The phenotypic characteristics of heterozygous reeler mouse. NeuroReport 10(6):1329–1334

    Article  CAS  PubMed  Google Scholar 

  • Ventruti A, Kazdoba TM, Niu S, D’Arcangelo G (2011) Reelin deficiency causes specific defects in the molecular composition of the synapses in the adult brain. Neuroscience 189:32–42. https://doi.org/10.1016/j.neuroscience.2011.05.050

    Article  CAS  PubMed  Google Scholar 

  • Voineagu I, Wang X, Johnston P, Lowe JK, Tian Y, Horvath S, Mill J, Cantor RM, Blencowe BJ, Geschwind DH (2011) Transcriptomic analysis of autistic brain reveals convergent molecular pathology. Nature 474(7351):380–384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • White JJ, Sillitoe RV (2013) Development of the cerebellum: from gene expression patterns to circuit maps. Wiley Interdiscip Rev Dev Biol 2(1):149–164

    Article  CAS  PubMed  Google Scholar 

  • Wilson L, Sotelo C, Caviness VS Jr (1981) Heterologous synapses upon Purkinje cells in the cerebellum of the Reeler mutant mouse: an experimental light and electron microscopic study. Brain Res 213(1):63–82

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The work described in this paper has been supported by local grants of the University of Turin. CC is in receipt of a grant of the Italian Ministry of Education and Research (MIUR).

Author information

Authors and Affiliations

Authors

Contributions

CC collected animal samples, processed them for immunocytochemistry, acquired and processed IMF images, collaborated to statistical analysis, and has been involved in drafting the manuscript and interpretation of data. AM substantially contributed to the conception and design of the experiments, performed statistical analysis, interpreted data, and wrote the manuscript. LL made substantial contributions to the conception and design of the study, collaborated to the acquisition of digital images and the interpretation of data, and critically revised the initial manuscript draft. All authors agreed to be accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work were appropriately investigated and resolved.

Corresponding author

Correspondence to Claudia Castagna.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical Approval

The experiments described in this paper were approved by the Animal Welfare Committee of the Department of Veterinary Sciences of the University of Turin and by the Italian Ministry of Health (authorization n° 65/2016-PR).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Castagna, C., Merighi, A. & Lossi, L. Decreased Expression of Synaptophysin 1 (SYP1 Major Synaptic Vesicle Protein p38) and Contactin 6 (CNTN6/NB3) in the Cerebellar Vermis of reln Haplodeficient Mice. Cell Mol Neurobiol 39, 833–856 (2019). https://doi.org/10.1007/s10571-019-00683-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10571-019-00683-7

Keywords

Navigation