Skip to main content

Advertisement

Log in

Immunohistochemical Localization of GFAP and Glutamate Regulatory Proteins in Chick Retina and Their Levels of Expressions in Altered Photoperiods

  • Original Research
  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Moderate to intense light is reported to damage the chick retina, which is cone dominated. Light damage alters neurotransmitter pools, such as those of glutamate. Glutamate level in the retina is regulated by glutamate–aspartate transporter (GLAST) and glutamine synthetase (GS). We examined immunolocalization patterns and the expression levels of both markers and of glial fibrillary acidic protein (GFAP, a marker of neuronal stress) in chick retina exposed to 2000 lux under 12-h light:12-h dark (12L:12D; normal photoperiod), 18L:6D (prolonged photoperiod), and 24L:0D (constant light) at post-hatch day 30. Retinal damage (increased death of photoreceptors and inner retinal neurons and Müller cell hypertrophy) and GFAP expression in Müller cells were maximal in 24L:0D condition compared to that seen in 12L:12D and 18L:6D conditions. GS was present in Müller cells and GLAST expressed in Müller cell processes and photoreceptor inner segments. GLAST expression was decreased in 24L:0D condition, and the expression levels between 12L:12D and 18L:6D, though increased marginally, were statistically insignificant. Similar was the case with GS expression that significantly decreased in 24L:0D condition. Our previous study with chicks exposed to 2000 lux reported increased retinal glutamate level in 24L:0D condition. The present results indicate that constant light induces decreased expressions of GLAST and GS, a condition that might aggravate glutamate-mediated neurotoxicity and delay neuroprotection in a cone-dominated retina.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Barnett NL, Pow DV, Robinson SR (2000) Inhibition of Müller cell glutamine synthetase rapidly impairs the retinal response to light. Glia 30:64–73

    Article  CAS  PubMed  Google Scholar 

  • Beatty S, Koh H, Phil M, Henson D, Boulton M (2000) The role of oxidative stress in the pathogenesis of age-related macular degeneration. Surv Ophthalmol 45:115–134

    Article  CAS  PubMed  Google Scholar 

  • Bringmann A, Pannicke T, Grosche J, Francke M, Wiedemann P, Skatchkov SN, Osborne NN, Reichenbach A (2006) Müller cells in the healthy and diseased retina. Prog Retin Eye Res 25:397–424

    Article  CAS  PubMed  Google Scholar 

  • Brison E, Jacomy H, Desforges M, Talbot PJ (2014) Novel treatment with neuroprotective and antiviral properties against a neuroinvasive human respiratory virus. J Virol 88:1548–1563

    Article  PubMed  PubMed Central  Google Scholar 

  • Büchi ER (1992) Cell death in the rat retina after a pressure-induced ischaemia–reperfusion insult: an electron microscopic study. I. Ganglion cell layer and inner nuclear layer. Exp Eye Res 55:605–613

    Article  PubMed  Google Scholar 

  • Bui BV, Hu RG, Acosta ML, Donaldson P, Vingrys AJ, Kalloniatis M (2009) Glutamate metabolic pathways and retinal function. J Neurochem 111:589–599

    Article  CAS  PubMed  Google Scholar 

  • de Vitry F, Picart R, Jacque C, Tixier-Vidal A (1981) Glial fibrillary acidic protein. A cellular marker of tanycytes in the mouse hypothalamus. Dev Neurosci 4:457–460

    Article  PubMed  Google Scholar 

  • Delyfer MN, Forster V, Neveux N, Picaud S, Léveillard T, Sahel JA (2005) Evidence for glutamate-mediated excitotoxic mechanisms during photoreceptor degeneration in the rd1 mouse retina. Mol Vis 11:688–696

    CAS  PubMed  Google Scholar 

  • Derouiche A (1996) Possible role of the Müller cell in uptake and metabolism of glutamate in the mammalian outer retina. Vis Res 36:3875–3878

    Article  CAS  PubMed  Google Scholar 

  • Derouiche A, Rauen T (1995) Coincidence of l-glutamate/l-aspartate transporter (GLAST) and glutamine synthetase (GS) immunoreactions in retinal glia: evidence for coupling of GLAST and GS in transmitter clearance. J Neurosci Res 42:131–143

    Article  CAS  PubMed  Google Scholar 

  • Eid T, Thomas MJ, Spencer DD, Rundén-Pran E, Lai JC, Malthankar GV, Kim JH, Danbolt NC, Ottersen OP, de Lanerolle NC (2004) Loss of glutamine synthetase in the epileptogenic hippocampus: possible mechanism for raised extra cellular glutamate in mesial temporal lobe epilepsy. Lancet 363:28–37

    Article  CAS  PubMed  Google Scholar 

  • Fukuda M, Nakanishi Y, Fuse M, Yokoi N, Hamada Y, Fukagawa M, Negi A, Nakamura M (2010) Altered expression of aquaporins 1 and 4 coincides with neurodegenerative events in retinas of spontaneously diabetic Torii rats. Exp Eye Res 90:17–25

    Article  CAS  PubMed  Google Scholar 

  • Ginsberg SD, Martin LJ, Rothstein JD (1995) Regional deafferentation down-regulates subtypes of glutamate transporter proteins. J Neurochem 65:2800–2803

    Article  CAS  PubMed  Google Scholar 

  • Gorovits R, Yakir A, Fox LE, Vardimon L (1996) Hormonal and non-hormonal regulation of glutamine synthetase in the developing neural retina. Brain Res 43:321–329

    Article  CAS  Google Scholar 

  • Grosche J, Härtig W, Reichenbach A (1995) Expression of glial fibrillary acidic protein (GFAP), glutamine synthetase (GS), and Bcl-2 protooncogene protein by Müller (glial) cells in retinal light damage of rats. Neurosci Lett 185:119–122

    Article  CAS  PubMed  Google Scholar 

  • Grossman R, Fox LE, Gorovits R, Ben-Dror I, Reisfeld S, Vardimon L (1994) Molecular basis for differential expression of glutamine synthetase in retina glia and neurons. Brain Res 21:312–320

    Article  CAS  Google Scholar 

  • Gunnersen D, Haley B (1992) Detection of glutamine synthetase in the cerebrospinal fluid of Alzheimer diseased patients: a potential diagnostic biochemical marker. Proc Nat Acad Sci USA 89:11949–11953

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harada T, Harada C, Nakamura K, Quah HM, Okumura A, Namekata K, Saeki T, Aihara M, Yoshida H, Mitani A, Tanaka K (2007) The potential role of glutamate transporters in the pathogenesis of normal tension glaucoma. J Clin Invest 117:1763–1770

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Härtig W, Grosche J, Distler C, Grimm D, el-Hifnawi E, Reichenbach A (1995) Alterations of Müller (glial) cells in dystrophic retinae of RCS rats. J Neurocytol 24:507–517

    Article  PubMed  Google Scholar 

  • Hertz L (2013) The glutamate–glutamine (GABA) cycle: importance of late postnatal development and potential reciprocal interactions between biosynthesis and degradation. Front Endocrinol 4:59

    Article  CAS  Google Scholar 

  • Holcombe DJ, Lengefeld N, Gole GA, Barnett NL (2008) The effects of acute intraocular pressure elevation on rat retinal glutamate transport. Acta Ophthalmol 86:408–414

    Article  CAS  PubMed  Google Scholar 

  • Hughes WF (1991) Quantitation of ischemic damage in the rat retina. Exp Eye Res 53:573–582

    Article  CAS  PubMed  Google Scholar 

  • Iandiev I, Biedermann B, Bringmann A, Reichel MB, Reichenbach A, Pannicke T (2006) Atypical gliosis in Müller cells of the slowly degenerating rds mutant mouse retina. Exp Eye Res 82:449–457

    Article  CAS  PubMed  Google Scholar 

  • Iandiev I, Wurm A, Hollborn M, Wiedemann P, Grimm C, Remé CE, Reichenbach A, Pannicke T, Bringmann A (2008) Müller cell response to blue light injury of the rat retina. Invest Ophthalmol Vis Sci 49:559–3567

    Article  Google Scholar 

  • Ishikawa M, Yoshitomi T, Zorumski CF, Izumi Y (2011) Downregulation of glutamine synthetase via GLAST suppression induces retinal axonal swelling in a rat ex vivo hydrostatic pressure model. Invest Ophthalmol Vis Sci 52:6604–6616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iuvone PM, Galli CL, Garrison-Gund CK, Neff NH (1978) Light stimulates tyrosine hydroxylase activity and dopamine synthesis in retinal amacrine neurons. Science 202:901–902

    Article  CAS  PubMed  Google Scholar 

  • Jha KA, Nag TC, Kumar V, Kumar P, Kumar B, Wadhwa S, Roy TS (2015) Differential expression of AQP1 and AQP4 in avascular chick retina exposed to moderate light of variable photoperiods. Neurochem Res 40:2153–2166

    Article  CAS  PubMed  Google Scholar 

  • Kugler P, Beyer A (2003) Expression of glutamate transporters in human and rat retina and rat optic nerve. Histochem Cell Biol 120:199–212

    Article  CAS  PubMed  Google Scholar 

  • Kuroiwa S, Katai N, Shibuki H, Kurokawa T, Umihira J, Nikaido T, Kametani K, Yoshimura N (1998) Expression of cell cycle-related genes in dying cells in retinal ischemic injury. Invest Ophthalmol Vis Sci 39:610–617

    CAS  PubMed  Google Scholar 

  • Lehre KP, Davanger S, Danbolt NC (1997) Localization of the glutamate transporter protein GLAST in rat retina. Brain Res 744:129–137

    Article  CAS  PubMed  Google Scholar 

  • Lewis GP, Erickson PA, Guérin CJ, Anderson DH, Fisher SK (1989) Changes in the expression of specific Müller cell proteins during long-term retinal detachment. Exp Eye Res 49:93–111

    Article  CAS  PubMed  Google Scholar 

  • Li F, Cao W, Anderson RE (2001) Protection of photoreceptor cells in adult rats from light-induced degeneration by adaptation to bright cyclic light. Exp Eye Res 73:569–577

    Article  CAS  PubMed  Google Scholar 

  • Li XM, Wendu RL, Yao J, Ren Y, Zhao YX, Cao GF, Qin J, Yan B (2014) Abnormal glutamate metabolism in the retina of aquaporin 4 (AQP4) knockout mice upon light damage. Neurol Sci 35:847–853

    Article  PubMed  Google Scholar 

  • Linser P, Moscona AA (1979) Induction of glutamine synthetase in embryonic neural retina: localization in Müller fibers and dependence on cell interactions. Proc Nat Acad Sci USA 76:6476–6480

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Louzada-Junior P, Dias JJ, Santos WF, Lachat JJ, Bradford HF, Coutinho-Netto J (1992) Glutamate release in experimental ischaemia of the retina: an approach using microdialysis. J Neurochem 59:358–363

    Article  CAS  PubMed  Google Scholar 

  • Marc RE, Jones BW, Watt CB, Strettoi E (2003) Neural remodeling in retinal degeneration. Prog Retin Eye Res 22:607–655

    Article  PubMed  Google Scholar 

  • Martin KR, Levkovitch-Verbin H, Valenta D, Baumrind L, Pease ME, Quigley HA (2002) Retinal glutamate transporter changes in experimental glaucoma and after optic nerve transection in the rat. Invest Ophthalmol Vis Sci 43:2236–2243

    PubMed  Google Scholar 

  • Martinez-Lozada Z, Waggener CT, Kim K, Zou S, Knapp PE, Hayashi Y, Ortega A, Fuss B (2014) Activation of sodium-dependent glutamate transporters regulates the morphological aspects of oligodendrocyte maturation via signaling through calcium/calmodulin-dependent kinase IIβ’s actin-binding/-stabilizing domain. Glia 62:1543–1558

    Article  PubMed  PubMed Central  Google Scholar 

  • Moreno MC, Sande P, Marcos HA, de Zavalía N, Keller Sarmiento MI, Rosenstein RE (2005) Effect of glaucoma on the retinal glutamate/glutamine cycle activity. FASEB J 19:1161–1162

    CAS  PubMed  Google Scholar 

  • Naskar R, Vorwerk CK, Dreyer EB (2000) Concurrent downregulation of a glutamate transporter and receptor in glaucoma. Invest Ophthalmol Vis Sci 41:1940–1944

    CAS  PubMed  Google Scholar 

  • Nishiyama T, Nishukawa S, Hiroshi, Tomita, Tamai M (2000) Müller cells in the preconditioned retinal ischemic injury rat. Tohoku J Exp Med 191:221–232

    Article  CAS  PubMed  Google Scholar 

  • Noell WK, Walker VS, Kang BS, Berman S (1966) Retinal damage by light in rats. Invest Ophthalmol 5:450–473

    CAS  PubMed  Google Scholar 

  • Penn JS, Naash MI, Anderson RE (1987) Effect of light history on retinal antioxidants and light damage susceptibility in the rat. Exp Eye Res 44:779–788

    Article  CAS  PubMed  Google Scholar 

  • Penn JS, Thum LA, Naash MI (1989) Photoreceptor physiology in the rat is governed by the light environment. Exp Eye Res 49:205–215

    Article  CAS  PubMed  Google Scholar 

  • Petito CK, Chung MC, Verkhovsky LM, Cooper AJ (1992) Brain glutamine synthetase increases following cerebral ischemia in the rat. Brain Res 569:275–280

    Article  CAS  PubMed  Google Scholar 

  • Rauen T, Rothstein JD, Wässle H (1996) Differential expression of three glutamate transporter subtypes in the rat retina. Cell Tissue Res 286:325–336

    Article  CAS  PubMed  Google Scholar 

  • Reichelt W, Stabel-Burow J, Pannicke T, Weichert H, Heinemann U (1997) The glutathione level of retinal Müller glial cells is dependent on the high-affinity sodium-dependent uptake of glutamate. Neuroscience 77:1213–1224

    Article  CAS  PubMed  Google Scholar 

  • Reichenbach A, Bringmann A (2013) New functions of Müller cells. Glia 61:651–678

    Article  PubMed  Google Scholar 

  • Sarthy VP, Pignataro L, Pannicke T, Weick M, Reichenbach A, Harada T, Tanaka K, Marc R (2005) Glutamate transport by retinal Muller cells in glutamate/aspartate transporter-knockout mice. Glia 49:184–196

    Article  PubMed  Google Scholar 

  • Shaked I, Ben-Dror I, Vardimon L (2002) Glutamine synthetase enhances the clearance of extracellular glutamate by the neural retina. J Neurochem 83:574–580

    Article  CAS  PubMed  Google Scholar 

  • Shen F, Chen B, Danias J, Lee KC, Lee H, Su Y, Podos SM, Mittag TW (2004) Glutamate-induced glutamine synthetase expression in retinal Muller cells after short-term ocular hypertension in the rat. Invest Ophthalmol Vis Sci 45:3107–3112

    Article  PubMed  Google Scholar 

  • Ulshafer RJ, Sherry DM, Dawson R, Wallace DR (1990) Excitatory amino acid involvement in retinal degeneration. Brain Res 531:350–354

    Article  CAS  PubMed  Google Scholar 

  • Vardimon L, Fox LE, Moscona AA (1986) Developmental regulation of glutamine synthetase and carbonic anhydrase II in neural retina. Proc Natl Acad Sci USA 83:9060–9064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vardimon L, Ben-Dror I, Avisar N, Oren A, Shiftan L (1999) Glucocorticoid control of glial gene expression. J Neurobiol 40:513–527

    Article  CAS  PubMed  Google Scholar 

  • Vaughan DK, Coulibaly SF, Darrow RM, Organisciak DT (2003) A morphometric study of light-induced damage in transgenic rat models of retinitis pigmentosa. Invest Ophthalmol Vis Sci 44:848–855

    Article  PubMed  Google Scholar 

  • Ward MM, Jobling AI, Kalloniatis M, Fletcher EL (2005) Glutamate uptake in retinal glial cells during diabetes. Diabetologia 48:351–360

    Article  CAS  PubMed  Google Scholar 

  • Wenzel A, Grimm C, Samardzija M, Remé CE (2005) Molecular mechanisms of light-induced photoreceptor apoptosis and neuroprotection for retinal degeneration. Prog Retin Eye Res 24:275–306

    Article  CAS  PubMed  Google Scholar 

  • Winkler BS (2008) An hypothesis to account for the renewal of outer segments in rod and cone photoreceptor cells: renewal as a surrogate antioxidant. Invest Ophthalmol Vis Sci 49:3259–3261

    Article  PubMed  Google Scholar 

  • Woldemussie E, Wijono M, Ruiz G (2004) Müller cell response to laser-induced increase in intraocular pressure in rats. Glia 47:109–119

    Article  PubMed  Google Scholar 

  • Yamashita H, Horie K, Yamamoto T, Nagano T, Hirano T (1992) Light-induced retinal damage in mice: hydrogen peroxide production and superoxide dismutase activity in retina. Retina 12:59–66

    Article  CAS  PubMed  Google Scholar 

  • Yang ZJ, Zhong YS (2015) Effect of adenosine on GLAST expression in the retina of a chronic ocular hypertension rat model. Exp Ther Med 10:991–994

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zeng KH, Xu HX, Mi MT, Zhang QY, Zhang YJ, Chen K, Chen F, Zhu JD, Yu XP (2009) Dietary taurine supplementation prevents glial alterations in retina of diabetic rats. Neurochem Res 34:244–254

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The work was financially supported by SERB, New Delhi, India (No. AS-27/2012, TCN). KAJ received Fellowships from UGC (New Delhi). The TEM Work was carried out at SAIF-New Delhi (DST), AIIMS, New Delhi.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tapas C. Nag.

Ethics declarations

Conflict of interest

All authors declared no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 12944 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jha, K.A., Nag, T.C., Wadhwa, S. et al. Immunohistochemical Localization of GFAP and Glutamate Regulatory Proteins in Chick Retina and Their Levels of Expressions in Altered Photoperiods. Cell Mol Neurobiol 37, 1029–1042 (2017). https://doi.org/10.1007/s10571-016-0436-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10571-016-0436-2

Keywords

Navigation