Skip to main content

Advertisement

Log in

Lipopolysaccharide-Induced Apoptosis of Astrocytes: Therapeutic Intervention by Minocycline

  • Original Research
  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Astrocytes are most abundant glial cell type in the brain and play a main defensive role in central nervous system against glutamate-induced toxicity by virtue of numerous transporters residing in their membranes and an astrocyte-specific enzyme glutamine synthetase (GS). In view of that, a dysregulation in the astrocytic activity following an insult may result in glutamate-mediated toxicity accompanied with astrocyte and microglial activation. The present study suggests that the lipopolysaccharide (LPS)-induced inflammation results in significant astrocytic apoptosis compared to other cell types in hippocampus and minocycline could not efficiently restrict the glutamate-mediated toxicity and apoptosis of astrocytes. Upon LPS exposure 76 % astrocytes undergo degeneration followed by 44 % oligodendrocytes, 26 % neurons and 10 % microglia. The pronounced astrocytic apoptosis resulted from the LPS-induced glutamate excitotoxicity leading to their hyperactivation as evident from their hypertrophied morphology, glutamate transporter 1 upregulation and downregulation of GS. Therapeutic minocycline treatment to LPS-infused rats efficiently restricted the inflammatory response and degeneration of other cell types but could not significantly combat with the apoptosis of astrocytes. Our study demonstrates a novel finding on cellular degeneration in the hippocampus revealing more of astrocytic death and suggests a more careful consideration on the protective efficacy of minocycline.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • al-Shabanah OA, Mostafa YH, Hassan MT, Khairaldin AA, al-Sawaf HA (1996) Vitamin E protects against bacterial endotoxin-induced increase of plasma corticosterone and brain glutamate in the rat. Res Commun Mol Pathol Pharmacol 92(1):95–105

    CAS  PubMed  Google Scholar 

  • Bezzi P, Domercq M, Brambilla L, Galli R, Schols D, Clercq DE, Vescovi A, Bagetta G, Kollias G, Meldolesi J, Volterra A (2001) CXCR4-activated astrocyte glutamate release via TNF-α: amplification by microglia triggers neurotoxicity. Nat Neurosci 4(7):702–710

    Article  CAS  PubMed  Google Scholar 

  • Blanc EM, Bruce-Keller AJ, Mattson MP (1998) Astrocytic gap junctional communication decreases neuronal vulnerability to oxidative stress-induced disruption of Ca2+ homeostasis and cell death. J Neurochem 70(3):958–970

    Article  CAS  PubMed  Google Scholar 

  • Blanco AM, Valles SL, Pascual M, Guerri C (2005) Involvement of TLR4/type I IL-1 receptor signalling in the induction of inflammatory mediators and cell death induced by ethanol in cultured astrocytes. J Immunol 175:6893–6899

    Article  CAS  PubMed  Google Scholar 

  • Bowman CC, Rasley A, Tranguch SL, Marriott I (2003) Cultured astrocytes express toll-like receptors for bacterial products. Glia 43:281–291

    Article  PubMed  Google Scholar 

  • Burguillos MA, Deierborg T, Kavanagh E, Persson A, Hajji N, Garcia-Quintanilla A, Cano J, Brundin P, Englund E, Venero JL, Joseph B (2011) Caspase signalling controls microglia activation and neurotoxicity. Nature 472(7343):319–324

    Article  CAS  PubMed  Google Scholar 

  • Cai ZY, Yan Y, Chen R (2010) Minocycline reduces astrocytic reactivation and neuroinflammation in the hippocampus of a vascular cognitive impairment rat model. Neurosci Bull 26(1):28–36

    Article  CAS  PubMed  Google Scholar 

  • Caruso C, Durand D, Schioth HB, Rey R, Seilicovich A, Lasaga M (2007) Activation of melanocortin 4 receptors reduces the inflammatory response and prevents apoptosis induced by lipopolysaccharide and interferon-γ in astrocytes. Endocrinology 148:4918–4926

    Article  CAS  PubMed  Google Scholar 

  • Castano A, Herrara AJ, Cano J, Machado A (1998) Lipopolysaccharide intranigral injection induces inflammatory reaction and damage in nigrostriatal dopaminergic system. J Neurochem 70:1584–1592

    Article  CAS  PubMed  Google Scholar 

  • Chen Y, Swanson RA (2003) Astrocytes and brain injury. J Cereb Blood Flow Metab 23:137–149

    Article  PubMed  Google Scholar 

  • Chen CJ, Liao SL, Kuo JS (2000) Gliotoxic action of glutamate on cultured astrocytes. J Neurochem 75:1557–1565

    Article  CAS  PubMed  Google Scholar 

  • Choi DW, Maulucci Gedde MA, Kriegstein AR (1987) Glutamate neurotoxicity in cortical cell culture. J Neurosci 7:357–368

    CAS  PubMed  Google Scholar 

  • Claycomb KI, Johnson KM, Winokur PN, Sacino AV, Crocker SJ (2013) Astrocyte regulation of CNS inflammation and remyelination. Brain Sci 3:1109–1127

    Article  PubMed  PubMed Central  Google Scholar 

  • Danbolt NC (2001) Glutamate uptake. Progr Neurobiol 65:1–105

    Article  CAS  Google Scholar 

  • Domercq M, Matute C (2004) Neuroprotection by tetracyclines. Trends Pharmacol Sci 25(12):609–612

    Article  CAS  PubMed  Google Scholar 

  • Domercq M, Sanchez-Gomez MV, Sherwin C, Etxebarria E, Fern R, Matute C (2007) System xc and glutamate transporter inhibition mediates microglial toxicity to oligodendrocytes. J Immunol 178:6549–6556

    Article  CAS  PubMed  Google Scholar 

  • Dutta K, Basu A (2011) Use of minocycline in viral infections. Indian J Med Res 133:467–470

    PubMed  PubMed Central  Google Scholar 

  • Dutta G, Zhang P, Liu B (2008) The lipopolysaccharide Parkinson’s disease animal model: mechanistic studies and drug discovery. Fundam Clin Pharmacol 22(5):453–464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Endale M, Kim SD, Lee WM, Kim S, Suk K, Cho JY, Park HJ, Wagley Y, Kim S, Oh JW, Rhee MH (2010) Ischemia induces regulator of G protein signaling 2 (RGS2) protein upregulation and enhances apoptosis in astrocytes. Am J Physiol Cell Physiol 298(3):C611–C623

    Article  CAS  PubMed  Google Scholar 

  • Felts PA, Woolston AM, Fernando HB, Asquith S, Gregson NA, Mizzi OJ, Smith KJ (2005) Inflammation and primary demyelination induced by the intraspinal injection of lipopolysaccharide. Brain 128:1649–1666

    Article  PubMed  Google Scholar 

  • Fern R, Moller T (2000) Rapid ischemic cell death in immature oligodendrocytes: a fatal glutamate release feedback loop. J Neurosci 20:34–42

    CAS  PubMed  Google Scholar 

  • Garcia-Segura LM, Mccarthy MM (2004) Minireview: role of glia in neuroendocrine function. Endocrinology 145:1082–1086

    Article  CAS  PubMed  Google Scholar 

  • Ghosh A, Birngruber T, Sattler W, Kroath T, Ratzer M, Sinner F, Pieber TR (2014) Assessment of blood brain barrier function and the neuroinflammatory response in the rat brain by using cerebral open flow microperfusion (cOFM). PLoS ONE 9(5):e98143

    Article  PubMed  PubMed Central  Google Scholar 

  • Giovavnini MG, Scali C, Prosperi C, Bellucci A, Pepeu G, Casamenti F (2003) Experimental brain inflammation and neurodegeneration as model of Alzheimer’s disease: protective effects of selective COX-2 inhibitors. Int J Immunopathol Pharmacol 16:31–40

    Google Scholar 

  • Gottlieb M, Matute C (1997) Expression of ionotropic glutamate receptor subunits in glial cells of the hippocampal CA1 area following transient forebrain ischemia. J Cereb Blood Flow Metab 17:290–300

    Article  CAS  PubMed  Google Scholar 

  • Guimaraes JS, Freire MA, Lima RR, Picanço-Diniz CW, Pereira A, Gomes-Leal W (2010) Minocycline treatment reduces white matter damage after excitotoxic striatal injury. Brain Res 1329:182–193

    Article  CAS  PubMed  Google Scholar 

  • Haber M, Abdel Baki SG, Grin’kina MN, Irizarry R, Ershova A, Orsi S, Grill RJ, Dash P, Bergold PJ (2013) Minocycline plus N-acetylcysteine synergize to modulate inflammation and prevent cognitive and memory deficits in a rat model of mild traumatic brain injury. Exp Neurol 249:169–177

    Article  CAS  PubMed  Google Scholar 

  • Haydon PG, Carmignoto G (2006) Astrocyte control of synaptic transmission and neurovascular coupling. Physiol Rev 86:1009–1031

    Article  CAS  PubMed  Google Scholar 

  • Henry CJ, Huang Y, Wynne A, Hanke M, Himler J, Bailey MT, Sheridan JF, Godbout JP (2008) Minocycline attenuates lipopolysaccharide (LPS) induced neuroinflammation, sickness behaviour and anhedonia. J Neuroinflammation 5:15

    Article  PubMed  PubMed Central  Google Scholar 

  • Huang TL, O’Banion MK (1998) Interleukin-1 beta and tumor necrosis factor-alpha suppress dexamethasone induction of glutamine synthetase in primary mouse astrocytes. J Neurochem 71:1436–1442

    Article  CAS  PubMed  Google Scholar 

  • Kim HS, Suh YH (2009) Minocycline and neurodegenerative diseases. Behav Brain Res 196(2):168–179

    Article  CAS  PubMed  Google Scholar 

  • Kim JH, Min KJ, Seol W, Jou I, Joe EH (2010a) Astrocytes in injury states rapidly produce anti-inflammatory factors and attenuate microglial inflammatory responses. J Neurochem 115(5):1161–1171

    Article  CAS  PubMed  Google Scholar 

  • Kim SH, Han YJ, Park JH, Yoo SJ (2010b) Glutamate induces endoplasmic reticulum stress-mediated apoptosis in primary rat astrocytes. J Korean Geriatr Soc 14(4):242–252

    Article  Google Scholar 

  • Kingham PJ, Cuzner ML, Pocock JM (1999) Apoptotic pathways mobilized in microglia and neurons as a consequence of chromogranin-A induced microglial activation. J Neurochem 73:538–547

    Article  CAS  PubMed  Google Scholar 

  • Kirchhoff F, Dringen R, Giaume C (2001) Pathways of neuron-astrocyte interactions and their possible role in neuroprotection. Eur Arch Psychiatry Clin Neurosci 251(4):159–169

    Article  CAS  PubMed  Google Scholar 

  • Kreutzberg GW (1996) Microglia: a sensor for pathological events in the CNS. Trends Neurosci 19:312–318

    Article  CAS  PubMed  Google Scholar 

  • Leonardo CC, Eakin AK, Ajmo JM, Collier LA, Pennypacker KR, Strongin AY, Gottschall PE (2008) Delayed administration of a matrix metalloproteinase inhibitor limits progressive brain injury after hypoxia–ischemia in the neonatal rat. J Neuroinflammation 5:34

    Article  PubMed  PubMed Central  Google Scholar 

  • Li J, Baud O, Vartanian T, Volpe JJ, Rosenberg PA (2005) Peroxynitrite generated by inducible nitric oxide synthase and NADPH oxidase mediates microglial toxicity to oligodendrocytes. Proc Natl Acad Sci USA 102:9936–9941

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li J, Ramenaden ER, Peng J, Koito H, Volpe JJ, Rosenberg PA (2008) Tumor necrosis factor alpha mediates lipopolysaccharide-induced microglial toxicity to developing oligodendrocytes when astrocytes are present. J Neurosci 28(20):5321–5330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liang J, Takeuchi H, Doi Y, Kawanokuchi J, Sonobe Y, Jin S, Yawata I, Li H, Yasuoka S, Mizuno T, Suzumura A (2008) Excitatory amino acid transporter expression by astrocytes is neuroprotective against microglial excitotoxicity. Brain Res 1210:11–19

    Article  CAS  PubMed  Google Scholar 

  • Lu DY, Tang CH, Chen YH, Wei IH (2010) Berberine suppresses neuroinflammatory responses through AMP-activated protein kinase activation in BV-2 microglia. J Cell Biochem 110:697–705

    Article  CAS  PubMed  Google Scholar 

  • Maragakis NJ, Rothstein JD (2004) Glutamate transporters: animal models to neurologic disease. Neurobiol Dis 15:461–473

    Article  CAS  PubMed  Google Scholar 

  • Matsukawa N, Yasuhara T, Hara K, Xu L, Maki M, Yu G, Kaneko Y, OjikaK HessDC, Borlongan CV (2009) Therapeutic targets and limits of minocycline neuroprotection in experimental ischemic stroke. BMC Neurosci 10:126

    Article  PubMed  PubMed Central  Google Scholar 

  • Matute C, Sanchez-Gomez MV, Martinez-Millan L, Miledi R (1997) Glutamate receptor-mediated toxicity in optic nerve oligodendrocytes. Proc Natl Acad Sci USA 94:8830–8835

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matute C, Domercq M, Sanchez-Gomez MV (2006) Glutamate-mediated glial injury: mechanisms and clinical importance. Glia 53:212–224

    Article  PubMed  Google Scholar 

  • McDonald JW, Althomsons SP, Hyrc KL, Choi DW, Goldberg MP (1998) Oligodendrocytes from forebrain are highly vulnerable to AMPA/kainate receptor-mediated excitotoxicity. Nat Med 4:291–297

    Article  CAS  PubMed  Google Scholar 

  • Merrill JE, Ignarro LJ, Sherman MP, Melinek J, Lane TE (1993) Microglial cell cytotoxicity of oligodendrocytes is mediated through nitric oxide. J Immunol 151:2132–2141

    CAS  PubMed  Google Scholar 

  • Oka A, Belliveau MJ, Rosenberg PA, Volpe JJ (1993) Vulnerability of oligodendroglia to glutamate: pharmacology, mechanisms, and prevention. J Neurosci 13:1441–1453

    CAS  PubMed  Google Scholar 

  • Olabarria M, Noristani HN, Verkhratskyand A, Rodríguez JJ (2011) Age-dependent decrease in glutamine synthetase expression in the hippocampal astroglia of the triple transgenic Alzheimer’s disease mouse model: mechanism for deficient glutamatergic transmission? Mol Neurodegener 6:55

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oliver CN, Starke-Reed PE, Stadtman ER, Liu GJ, Carney JM, Floyd RA (1990) Oxidative damage to brain proteins, loss of glutamine synthetase activity, and production of free radicals during ischemia/reperfusion-induced injury to gerbil brain. Proc Natl Acad Sci USA 87:5144–5147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • O’Shea RD, Lau CL, Farso MC, Diwakarla S, Zagami CJ, Svendsen BB, Feeney SJ, Callaway JK, Jones NM, Pow DV, Danbolt NC, Jarrott B, Beart PM (2006) Effects of lipopolysaccharide on glial phenotype and activity of glutamate transporters: evidence for delayed up-regulation and redistribution of GLT-1. Neurochem Int 48:604–610

    Article  PubMed  Google Scholar 

  • Paquet M, Ribeiro FM, Guadagno J, Jessica L, Esseltine JL, Ferguson SSG, Cregan SP (2013) Role of metabotropic glutamate receptor 5 signaling and homer in oxygen glucose deprivation-mediated astrocyte apoptosis. Mol Brain 6:9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Patro N, Singh K, Patro I (2013) Differential microglial and astrocytic response to bacterial and viral infection in the developing hippocampus of neonatal rats. IJEB 51:606–614

    Google Scholar 

  • Paxinos G, Watson C (1982) The rat brain in stereotaxic coordinates. Academic Press, San Diego

    Google Scholar 

  • Pickering M, Cumiskey D, O’Connor JJ (2005) Actions of TNF-alpha on glutamatergic synaptic transmission in the central nervous system. Exp Physiol 90:663–670

    Article  CAS  PubMed  Google Scholar 

  • Plane JM, Shen Y, Pleasure DE, Deng W (2010) Prospects for minocycline neuroprotection. Arch Neurol 67(12):1442–1448

    Article  PubMed  PubMed Central  Google Scholar 

  • Polazzi E, Contestabile A (2002) Reciprocal interactions between microglia and neurons: from survival to neuropathology. Rev Neurosci 13:221–242

    Article  PubMed  Google Scholar 

  • Quintas C, Pinho D, Pereira C, Saraiva L, Goncalves J, Queiroz G (2014) Microglia P2Y6 receptors mediate nitric oxiderelease and astrocyte apoptosis. J Neuroinflammation 11:141–152

    Article  PubMed  PubMed Central  Google Scholar 

  • Saijo K, Winner B, Carson CT, Collier JG, Boyer L, Rosenfeld MG, Gage FH, Glass CK (2009) A Nurr1/CoREST pathway in microglia and astrocytes protects dopaminergic neurons from inflammation induced death. Cell 137:47–59

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schousboe A, Belhage B, Frandsen A (1997) Role of Ca+2 and other second messengers in excitatory amino acid receptor mediated neurodegeneration: clinical perspectives. Clin Neurosci 4(4):194–198

    CAS  PubMed  Google Scholar 

  • Schubert P, Ferroni S (2003) Pathological glial reactions in neurodegenerative disorders: prospects for future therapeutics. Expert Rev Neurother 3(3):279–287

    Article  CAS  PubMed  Google Scholar 

  • Shaked I, Ben-Dror I, Vardimon L (2002) Glutamine synthetase enhances the clearance of extracellular glutamate by the neural retina. J Neurochem 83:574–580

    Article  CAS  PubMed  Google Scholar 

  • Sherwin C, Fern R (2005) Acute lipopolysaccharide-mediated injury in neonatal white matter glia: role of TNF-α, IL-1β, and calcium. J Immunol 175:155–161

    Article  CAS  PubMed  Google Scholar 

  • Si Q, Cosenza MA, Kim MO, Zhao ML, Brownlee M, Goldstein H, Lee SC (2004) A novel action of minocycline: inhibition of human immunodeficiency virus type 1 infection in microglia. J Neurovirol 10(5):284–292

    Article  CAS  PubMed  Google Scholar 

  • Sofroniew MV, Vinters HV (2010) Astrocytes: biology and pathology. Acta Neuropathol 119:7–35

    Article  PubMed  PubMed Central  Google Scholar 

  • Suk K, Lee J, Hur J, Kim YS, Lee M, Cha S, Kim S, Kim H (2001) Activation-induced cell death of rat astrocytes. Brain Res 900:342–347

    Article  CAS  PubMed  Google Scholar 

  • Takuma K, Baba A, Matsuda T (2004) Astrocyte apoptosis: implications for neuroprotection. Prog Neurobiol 72:111–127

    Article  CAS  PubMed  Google Scholar 

  • Tanaka K, Watase K, Manabe T, Yamada K, Watanabe M, Takahashi K, Iwama H, Nishikawa T, Ichihara N, Kikuchi T, Okuyama S, Kawashima N, Hori S, Takimoto M, Wada K (1997) Epilepsy and exacerbation of brain injury in mice lacking the glutamate transporter GLT-1. Science 276:1699–1702

    Article  CAS  PubMed  Google Scholar 

  • Tikka T, Fiebich BL, Goldsteins G, Keinanen R, Koistinaho J (2001) Minocycline, a tetracycline derivative, is neuroprotective against excitotoxicity by inhibiting activation and proliferation of microglia. J Neurosci 21(8):2580–2588

    CAS  PubMed  Google Scholar 

  • Tilleux S, Hermans E (2008) Down-regulation of astrocytic GLAST by microglia-related inflammation is abrogated in dibutyryl camp-differentiated cultures. J Neurochem 105(6):2224–2236

    Article  CAS  PubMed  Google Scholar 

  • Tilleux S, Berger J, Hermans E (2007) Induction of astrogliosis by activated microglia is associated with a down-regulation of metabotropic glutamate receptor 5. J Neuroimmunol 189(1–2):23–30

    Article  CAS  PubMed  Google Scholar 

  • Verkhratsky A, Butt A (2007) Glial neurobiology. A textbook. Wiley, Chichester

    Book  Google Scholar 

  • Wang YS, White TD (1999) The bacterial endotoxin lipopolysaccharide causes rapid inappropriate excitation in rat cortex. J Neurochem 72:652–660

    Article  CAS  PubMed  Google Scholar 

  • Wegrzynowicz MS, Wegrzynowicz M, Lee E, Bowman AB, Aschner M (2011) Role of astrocytes in brain function and disease. Toxicol Pathol 39(1):115–123

    Article  PubMed  Google Scholar 

  • Yoon SY, Patel D, Dougherty PM (2012) Minocycline blocks lipopolysaccharide induced hyperalgesia by suppression of microglia but not astrocytes. Neuroscience 221:214–224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yrjanheikki J, Keinanen R, Pellikka M, Hokfelt T, Koistinaho J (1998) Tetracyclines inhibit microglial activation and are neuroprotective in global brain ischemia. Proc Natl Acad Sci USA 95:15769–15774

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zadori D, Klivenyi P, Szalardy L, Fulop F, Toldi J, Vecsei L (2012) Mitochondrial disturbances, excitotoxicity, neuroinflammation and kynurenines: novel therapeutic strategies for neurodegenerative disorders. J Neurol Sci 322:187–191

    Article  CAS  PubMed  Google Scholar 

  • Zhao G, Flavin MP (2000) Differential sensitivity of rat hippocampal and cortical astrocytes to oxygen-glucose deprivation injury. Neurosci Lett 285:177–180

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thankfully acknowledge the Department of Biotechnology, Ministry of Science and Technology, Govt. of India, New Delhi for providing the financial support. Facilities developed through the DBT-Human Resource Development and Bioinformatics Infrastructural Facility Programmes from Department of Biotechnology have also been used in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ishan K. Patro.

Ethics declarations

Conflict of interest

The authors have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, A., Patro, N. & Patro, I.K. Lipopolysaccharide-Induced Apoptosis of Astrocytes: Therapeutic Intervention by Minocycline. Cell Mol Neurobiol 36, 577–592 (2016). https://doi.org/10.1007/s10571-015-0238-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10571-015-0238-y

Keywords

Navigation