Skip to main content

Advertisement

Log in

Responses to Apical and Basolateral Application of Glutamate in Mouse Fungiform Taste Cells with Action Potentials

  • Original Research
  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Abstract

In taste bud cells, glutamate may elicit two types of responses, as an umami tastant and as a neurotransmitter. Glutamate applied to apical membrane of taste cells would elicit taste responses whereas glutamate applied to basolateral membrane may act as a neurotransmitter. Using restricted stimulation to apical or basolateral membrane of taste cells, we examined responses of taste cells to glutamate stimulation, separately. Apical application of monosodium glutamate (MSG, 0.3 M) increased firing frequency in some of mouse fungiform taste cells that evoked action potentials. These cells were tested with other basic taste compounds, NaCl (salty), saccharin (sweet), HCl (sour), and quinine (bitter). MSG-sensitive taste cells could be classified into sweet-best (S-type), MSG-best (M-type), and NaCl or other electrolytes-best (N- or E/H-type) cells. Furthermore, S- and M-type could be classified into two sub-types according to the synergistic effect between MSG and inosine-5′-monophosphate (S1, M1 with synergism; S2, M2 without synergism). Basolateral application of glutamate (100 μM) had almost no effect on the mean spontaneous firing rates in taste cells. However, about 10% of taste cells tested showed transient increases in spontaneous firing rates (>mean + 2 standard deviation) after basolateral application of glutamate. These results suggest the existence of multiple types of umami-sensitive taste cells and the existence of glutamate receptor(s) on the basolateral membrane of a subset of taste cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Bos NP, Mirmiran M (1993) Effects of excitatory and inhibitory amino acids on neuronal discharges in the cultured suprachiasmatic nucleus. Brain Res Bull 31:67–72

    Article  PubMed  CAS  Google Scholar 

  • Caicedo A, Jafri MS, Roper SD (2000) In situ Ca2+ imaging reveals neurotransmitter receptors for glutamate in taste receptor cells. J Neurosci 20:7978–7985

    PubMed  CAS  Google Scholar 

  • Chaudhari N, Roper SD (1998) Molecular and physiological evidence for glutamate (umami) taste transduction via a G protein-coupled receptor. Ann N Y Acad Sci 855:398–406

    Article  PubMed  CAS  Google Scholar 

  • Chaudhari N, Yang H, Lamp C, Delay E, Cartford C, Than T, Roper S (1996) The taste of monosodium glutamate: membrane receptors in taste buds. J Neurosci 16:3817–3826

    PubMed  CAS  Google Scholar 

  • Chaudhari N, Landin AM, Roper SD (2000) A metabotropic glutamate receptor variant functions as a taste receptor. Nat Neurosci 3:113–119

    Article  PubMed  CAS  Google Scholar 

  • Damak S, Rong M, Yasumatsu K, Kokrashvili Z, Varadarajan V, Zou S, Jiang P, Ninomiya Y, Margolskee RF (2003) Detection of sweet and umami taste in the absence of taste receptor T1r3. Science 301:850–853

    Article  PubMed  CAS  Google Scholar 

  • Dingledine R, Conn PJ (2000) Peripheral glutamate receptors: molecular biology and role in taste sensation. J Nutr 130:1039S–1042S

    PubMed  CAS  Google Scholar 

  • Gähwiler BH (1976) Spontaneous bioelectric activity of cultured Purkinje cells during exposure to glutamate, glycine, and strychnine. J Neurobiol 7:97–107

    Article  PubMed  Google Scholar 

  • Hellekant G, Ninomiya Y (1991) On the taste of umami in chimpanzee. Physiol Behav 49:927–934

    Article  PubMed  CAS  Google Scholar 

  • Hellekant G, Danilova V, Ninomiya Y (1997) Primate sense of taste: behavioral and single chorda tympani and glossopharyngeal nerve fiber recordings in the rhesus monkey, Macaca mulatta. J Neurophysiol 77:978–993

    PubMed  CAS  Google Scholar 

  • Kim MR, Kusakabe Y, Miura H, Shindo Y, Ninomiya Y, Hino A (2003) Regional expression patterns of taste receptors and gustducin in the mouse tongue. Biochem Biophys Res Commun 312:500–506

    Article  PubMed  CAS  Google Scholar 

  • Li X, Staszewski L, Xu H, Durick K, Zoller M, Adler E (2002) Human receptors for sweet and umami taste. Proc Natl Acad Sci USA 99:4692–4696

    Article  PubMed  CAS  Google Scholar 

  • Lindemann B, Ogiwara Y, Ninomiya Y (2002) The discovery of umami. Chem Senses 27:843–844

    Article  PubMed  Google Scholar 

  • Maruyama Y, Pereira E, Margolskee RF, Chaudhari N, Roper SD (2006) Umami responses in mouse taste cells indicate more than one receptor. J Neurosci 26:2227–3420

    Article  PubMed  CAS  Google Scholar 

  • Nelson G, Hoon MA, Chandrashekar J, Zhang Y, Ryba NJ, Zuker CS (2001) Mammalian sweet taste receptors. Cell 106:381–390

    Article  PubMed  CAS  Google Scholar 

  • Nelson G, Chandrashekar J, Hoon MA, Feng L, Zhao G, Ryba NJ, Zuker CS (2002) An amino-acid taste receptor. Nature 416:199–202

    Article  PubMed  CAS  Google Scholar 

  • Ninomiya Y, Funakoshi M (1989a) Behavioral discrimination between glutamate and the four basic taste substances in mice. Comp Biochem Physiol A 92:365–370

    Article  PubMed  CAS  Google Scholar 

  • Ninomiya Y, Funakoshi M (1989b) Peripheral neural basis for behavioural discrimination between glutamate and the four basic taste substances in mice. Comp Biochem Physiol A 92:371–376

    Article  PubMed  CAS  Google Scholar 

  • Ninomiya Y, Nakashima K, Fukuda A, Nishino H, Sugimura T, Hino A, Danilova V, Hellekant G (2000) Responses to umami substances in taste bud cells innervated by the chorda tympani and glossopharyngeal nerves. J Nutr 130:950S–953S

    PubMed  CAS  Google Scholar 

  • Roper SD (2007) Signal transduction and information processing in mammalian taste buds. Pflugers Arch 454:759–776

    Article  PubMed  CAS  Google Scholar 

  • San Gabriel A, Uneyama H, Yoshie Y, Torii K (2005) Cloning and characterization of a novel mGluR1 variant from vallate papillae that functions as a receptor for L-glutamate stimuli. Chem Senses 30:i25–i26

    Article  PubMed  CAS  Google Scholar 

  • Sato M, Yamashita S, Ogawa H (1970) Potentiation of gustatory response to monosodium glutamate in rat chorda tympani fibers by addition of 5′-ribonucleotides. Jpn J Physiol 20:444–464

    Article  PubMed  CAS  Google Scholar 

  • Tomchik SM, Berg S, Kim JW, Chaudhari N, Roper SD (2007) Breadth of tuning and taste coding in mammalian taste buds. J Neurosci 27:10840–10848

    Article  PubMed  CAS  Google Scholar 

  • Toyono T, Seta Y, Kataoka S, Harada H, Morotomi T, Kawano S, Shigemoto R, Toyoshima K (2002) Expression of the metabotropic glutamate receptor, mGluR4a, in the taste hairs of taste buds in rat gustatory papillae. Arch Histol Cytol 65:91–96

    Article  PubMed  CAS  Google Scholar 

  • Toyono T, Seta Y, Kataoka S, Kawano S, Shigemoto R, Toyoshima K (2003) Expression of metabotropic glutamate receptor group I in rat gustatory papillae. Cell Tissue Res 313:29–35

    Article  PubMed  CAS  Google Scholar 

  • Vandenbeuch A, Tizzano M, Anderson CB, Stone LM, Goldberg D, Kinnamon SC (2010) Evidence for a role of glutamate as an efferent transmitter in taste buds. BMC Neurosci 11:77

    Article  PubMed  Google Scholar 

  • Yamaguchi S (1967) The synergistic taste effect of monosodium glutamate and disodium 5′-inosinate. J Food Sci 32:473–478

    Article  CAS  Google Scholar 

  • Yamaguchi S (1991) Basic properties of umami and effects on humans. Physiol Behav 49:833–841

    Article  PubMed  CAS  Google Scholar 

  • Yang H, Wanner IB, Roper SD, Chaudhari N (1999) An optimized method for in situ hybridization with signal amplification that allows the detection of rare mRNAs. J Histochem Cytochem 47:431–446

    Article  PubMed  CAS  Google Scholar 

  • Yasumatsu K, Yoshida R, Shigemura N, Damak S, Margolskee RF, Ninomiya Y (2006) Multiple receptors, transduction pathways and fiber types underlie umami taste in mice. Chem Senses 31:E88–E89 (abstract)

    Google Scholar 

  • Yasumatsu K, Horio N, Murata Y, Shirosaki S, Ohkuri T, Yoshida R, Ninomiya Y (2009) Multiple receptors underlie glutamate taste responses in mice. Am J Clin Nutr 90:747S–752S

    Article  PubMed  CAS  Google Scholar 

  • Yasuo T, Kusuhara Y, Yasumatsu K, Ninomiya Y (2008) Multiple receptor systems for glutamate detection in the taste organ. Biol Pharm Bull 31:1833–1837

    Article  PubMed  CAS  Google Scholar 

  • Yoshida R, Ninomiya Y (2010) New insights into the signal transmission from taste cells to gustatory nerve fibers. Int Rev Cell Mol Biol 279C:101–134

    Article  Google Scholar 

  • Yoshida R, Sanematsu K, Shigemura N, Yasumatsu K, Ninomiya Y (2005) Taste receptor cells responding with action potentials to taste stimuli and their molecular expression of taste related genes. Chem Senses 30:i19–i20

    Article  PubMed  CAS  Google Scholar 

  • Yoshida R, Shigemura N, Sanematsu K, Yasumatsu K, Ishizuka S, Ninomiya Y (2006) Taste responsiveness of fungiform taste cells with action potentials. J Neurophysiol 96:3088–3095

    Article  PubMed  Google Scholar 

  • Yoshida R, Miyauchi A, Yasuo T, Jyotaki M, Murata Y, Yasumatsu K, Shigemura N, Yanagawa Y, Obata K, Ueno H, Margolskee RF, Ninomiya Y (2009) Discrimination of taste qualities among mouse fungiform taste bud cells. J Physiol 587:4425–4439

    Article  PubMed  CAS  Google Scholar 

  • Yoshida R, Ohkuri T, Jyotaki M, Yasuo T, Horio N, Yasumatsu K, Sanematsu K, Shigemura N, Yamamoto T, Margolskee RF, Ninomiya Y (2010) Endocannabinoids selectively enhance sweet taste. Proc Natl Acad Sci USA 107:935–939

    Article  PubMed  CAS  Google Scholar 

  • Zhang F, Klebansky B, Fine RM, Xu H, Pronin A, Liu H, Tachdjian C, Li X (2008) Molecular mechanism for the umami taste synergism. Proc Natl Acad Sci USA 105:20930–20934

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by KAKENHI 18109013, 18077004 (YN), and 21791808 (RY).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryusuke Yoshida.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Niki, M., Takai, S., Kusuhara, Y. et al. Responses to Apical and Basolateral Application of Glutamate in Mouse Fungiform Taste Cells with Action Potentials. Cell Mol Neurobiol 31, 1033–1040 (2011). https://doi.org/10.1007/s10571-011-9702-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10571-011-9702-5

Keywords

Navigation