Skip to main content

Advertisement

Log in

Targeting Neurons of Rat Nucleus Tractus Solitarii with the Gene Transfer Vector Adeno-Associated Virus Type 2 to Up-Regulate Neuronal Nitric Oxide Synthase

  • Original Paper
  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Adeno-associated virus (AAV) has distinct advantages over other viral vectors in delivering genes of interest to the brain. AAV mainly transfects neurons, produces no toxicity or inflammatory responses, and yields long-term transgene expression. In this study, we first tested the hypothesis that AAV serotype 2 (AAV2) selectively transfects neurons but not glial cells in the nucleus tractus solitarii (NTS) by examining expression of the reporter gene, enhanced green fluorescent protein (eGFP), in the rat NTS after unilateral microinjection of AAV2eGFP into NTS. Expression of eGFP was observed in 1–2 cells in the NTS 1 day after injection. The number of transduced cells and the intensity of eGFP fluorescence increased from day 1 to day 28 and decreased on day 60. The majority (92.9 ± 7.0%) of eGFP expressing NTS cells contained immunoreactivity for the neuronal marker, protein gene product 9.5, but not that for the glial marker, glial fibrillary acidic protein. We observed eGFP expressing neurons and fibers in the nodose ganglia (NG) both ipsilateral and contralateral to the injection. In addition, eGFP expressing fibers were present in both ipsilateral and contralateral nucleus ambiguus (NA), caudal ventrolateral medulla (CVLM) and rostral ventrolateral medulla (RVLM). Having established that AAV2 was able to transduce a gene into NTS neurons, we constructed AAV2 vectors that contained cDNA for neuronal nitric oxide synthase (nNOS) and examined nNOS expression in the rat NTS after injection of this vector into the area. Results from RT-PCR, Western analysis, and immunofluorescent histochemistry indicated that nNOS expression was elevated in rat NTS that had been injected with AAV2nNOS vectors. Therefore, we conclude that AAV2 is an effective viral vector in chronically transducing NTS neurons and that AAV2nNOS can be used as a specific gene transfer tool to study the role of nNOS in CNS neurons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

AAV:

Adeno-associated virus

AAV2:

Adeno-associated virus type 2

AAV2eGFP:

Adeno-associated virus type 2 encoding enhanced green fluorescent protein

AAV2nNOS:

Adeno-associated virus type 2 encoding cDNA of nNOS

AP:

Area postrema

CMV promotor:

Cytomegalovirus promotor

CVLM:

Caudal ventrolateral medulla

DMV:

Dorsal motor nucleus of vagus

eGFP:

Enhanced green fluorescent protein

eNOS:

Endothelial nitric oxide synthase

GAPDH:

Glyceraldehyde-3-phosphate

Gr:

Gracilus nucleus

GFAP:

Glial fibrillary acidic protein

NA:

Nucleus ambiguus

NG:

Nodose ganglion

nNOS:

Neuronal nitric oxide synthase

NO:

Nitric oxide

RT-PCR:

Reverse transcription polymerase chain reaction

RVLM:

Rostral ventrolateral medulla

PGP9.5:

Protein gene product 9.5

NTS:

Nucleus tractus solitarii

PBS:

Phosphate buffered saline

RRX:

Rhodamine red X

Tr:

Tractus solitarius

References

  • Allen AM, Dosanjh JK, Erac M, Dassanayake S, Hannan RD, Thomas WG (2006) Expression of constitutively active angiotensin receptors in the rostral ventrolateral medulla increases blood pressure. Hypertension 47:1054–1061

    Article  PubMed  CAS  Google Scholar 

  • Belur LR, Kaemmerer WF, McIvor RS, Low WC (2008) Adeno-associated virus type 2 vectors: transduction and long-term expression in cerebellar Purkinje cells in vivo is mediated by the fibroblast growth factor receptor 1: bFGFR-1 mediates AAV2 transduction of Purkinje cells. Arch Virol 153:2107–2110

    Article  PubMed  CAS  Google Scholar 

  • Boscan P, Pickering AE, Paton JF (2002) The nucleus of the solitary tract: an integrating station for nociceptive and cardiorespiratory afferents. Exp Physiol 87:259–266

    Article  PubMed  Google Scholar 

  • Boulis NM, Turner DE, Dice JA, Bhatia V, Feldman EL (1999) Characterization of adenoviral gene expression in spinal cord after remote vector delivery. Neurosurgery 45:131–137

    Article  PubMed  CAS  Google Scholar 

  • Bradley RM, King MS, Wang L, Shu X (1996) Neurotransmitter and neuromodulator activity in the gustatory zone of the nucleus tractus solitarius. Chem Senses 21:377–385

    Article  PubMed  CAS  Google Scholar 

  • Bredt DS, Hwang PM, Glatt CE, Lowenstein C, Reed RR, Snyder SH (1991) Cloned and expressed nitric oxide synthase structurally resembles cytochrome P-450 reductase. Nature 351:714–718

    Article  PubMed  CAS  Google Scholar 

  • Broussard DL, Altschuler SM (2000) Brainstem viscerotopic organization of afferents and efferents involved in the control of swallowing. Am J Med 108(Suppl 4a):79S–86S

    Article  PubMed  Google Scholar 

  • Bueler H (1999) Adeno-associated viral vectors for gene transfer and gene therapy. Biol Chem 380:613–622

    Article  PubMed  CAS  Google Scholar 

  • Burger C, Gorbatyuk OS, Velardo MJ, Peden CS, Williams P, Zolotukhin S, Reier PJ, Mandel RJ, Muzyczka N (2004) Recombinant AAV viral vectors pseudotyped with viral capsids from serotypes 1, 2, and 5 display differential efficiency and cell tropism after delivery to different regions of the central nervous system. Mol Ther 10:302–317

    Article  PubMed  CAS  Google Scholar 

  • Cearley CN, Wolfe JH (2007) A single injection of an adeno-associated virus vector into nuclei with divergent connections results in widespread vector distribution in the brain and global correction of a neurogenetic disease. J Neurosci 27:9928–9940

    Article  PubMed  CAS  Google Scholar 

  • Chamberlin NL, Du B, de Lacalle S, Saper CB (1998) Recombinant adeno-associated virus vector: use for transgene expression and anterograde tract tracing in the CNS. Brain Res 793:169–175

    Article  PubMed  CAS  Google Scholar 

  • Chen Y, Chen H, Hoffmann A, Cool DR, Diz DI, Chappell MC, Chen AF, Morris M (2006) Adenovirus-mediated small-interference RNA for in vivo silencing of angiotensin AT1a receptors in mouse brain. Hypertension 47:230–237

    Article  PubMed  CAS  Google Scholar 

  • Chu Y, Heistad DD, Knudtson KL, Lamping KG, Faraci FM (2002) Quantification of mRNA for endothelial NO synthase in mouse blood vessels by real-time polymerase chain reaction. Arterioscler Thromb Vasc Biol 22:611–616

    Article  PubMed  CAS  Google Scholar 

  • Dampney RAL (1994) Functional organization of central pathways regulating the cardiovascular system. Physiol Rev 74:323–364

    PubMed  CAS  Google Scholar 

  • Durham HD, Lochmuller H, Jani A, Acsadi G, Massie B, Karpati G (1996) Toxicity of replication-defective adenoviral recombinants in dissociated cultures of nervous tissue. Exp Neurol 140:14–20

    Article  PubMed  CAS  Google Scholar 

  • Gasmi M, Brandon EP, Herzog CD, Wilson A, Bishop KM, Hofer EK, Cunningham JJ, Printz MA, Kordower JH, Bartus RT (2007) AAV2-mediated delivery of human neurturin to the rat nigrostriatal system: long-term efficacy and tolerability of CERE-120 for Parkinson’s disease. Neurobiol Dis 27:67–76

    Article  PubMed  CAS  Google Scholar 

  • Hadaczek P, Eberling JL, Pivirotto P, Bringas J, Forsayeth J, Bankiewicz KS (2010) Eight years of clinical improvement in MPTP-lesioned primates after gene therapy with AAV2-hAADC. Mol Ther 18:1458–1461

    Article  PubMed  CAS  Google Scholar 

  • Hayakawa T, Zheng JQ, Yajima Y (1997) Direct synaptic projections to esophageal motoneurons in the nucleus ambiguus from the nucleus of the solitary tract of the rat. J Comp Neurol 381:18–30

    Article  PubMed  CAS  Google Scholar 

  • Hayes MR, Skibicka KP, Leichner TM, Guarnieri DJ, DiLeone RJ, Bence KK, Grill HJ (2010) Endogenous leptin signaling in the caudal nucleus tractus solitarius and area postrema is required for energy balance regulation. Cell Metab 11:77–83

    Article  PubMed  CAS  Google Scholar 

  • Herbison AE, Simonian SX, Norris PJ, Emson PC (1996) Relationship of neuronal nitric oxide synthase immunoreactivity to GnRH neurons in the ovariectomized and intact female rat. J Endocrinol 8:73–82

    CAS  Google Scholar 

  • Hirooka Y, Sakai K, Kishi T, Ito K, Shimokawa H, Takeshita A (2003) Enhanced depressor response to endothelial nitric oxide synthase gene transfer into the nucleus tractus solitarii of spontaneously hypertensive rats. Hypertens Res 26:325–331

    Article  PubMed  CAS  Google Scholar 

  • Hollis ER, Kadoya K, Hirsch M, Samulski RJ, Tuszynski MH (2008) Efficient retrograde neuronal transduction utilizing self-complementary AAV1. Mol Ther 16:296–301

    Article  PubMed  CAS  Google Scholar 

  • Johnston LC, Eberling J, Pivirotto P, Hadaczek P, Federoff HJ, Forsayeth J, Bankiewicz KS (2009) Clinically relevant effects of convection-enhanced delivery of AAV2-GDNF on the dopaminergic nigrostriatal pathway in aged rhesus monkeys. Hum Gene Ther 20:497–510

    Article  PubMed  CAS  Google Scholar 

  • Kalia M, Sullivan JM (1982) Brainstem projections of sensory and motor components of the vagus nerve in the rat. J Comp Neurol 211:248–264

    Article  PubMed  CAS  Google Scholar 

  • Kaplitt MG, Xiao X, Samulski RJ, Li J, Ojamaa K, Klein IL, Makimura H, Kaplitt MJ, Strumpf RK, Diethrich EB (1996) Long-term gene transfer in porcine myocardium after coronary infusion of an adeno-associated virus vector. Ann Thorac Surg 62:1669–1676

    Article  PubMed  CAS  Google Scholar 

  • Kaspar BK, Erickson D, Schaffer D, Hinh L, Gage FH, Peterson DA (2002) Targeted retrograde gene delivery for neuronal protection. Mol Ther 5:50–56

    Article  PubMed  CAS  Google Scholar 

  • Klein RL, Meyer EM, Peel AL, Zolotukhin S, Meyers C, Muzyczka N, King MA (1998) Neuron-specific transduction in the rat septohippocampal or nigrostriatal pathway by recombinant adeno-associated virus vectors. Exp Neurol 150:183–194

    Article  PubMed  CAS  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural protein during the assemble of the head of bacterophage T4. Nature 227:680–685

    Article  PubMed  CAS  Google Scholar 

  • Lawrence AJ, Jarrott B (1996) Neurochemical modulation of cardiovascular control in the nucleus tractus solitarius. Prog Neurobiol 48:21–53

    Article  PubMed  CAS  Google Scholar 

  • Lin LH (2009) Glutamatergic neurons say NO in the nucleus tractus solitarii. J Chem Neuroanat 38:154–165

    Article  PubMed  CAS  Google Scholar 

  • Lin LH, Talman WT (2005a) Nitroxidergic neurons in rat nucleus tractus solitarii express vesicular glutamate transporter 3. J Chem Neuroanat 29:179–191

    Article  PubMed  CAS  Google Scholar 

  • Lin LH, Talman WT (2005b) Soluble guanylate cyclase and neuronal nitric oxide synthase colocalize in rat nucleus tractus solitarii. J Chem Neuroanat 29:127–136

    Article  PubMed  CAS  Google Scholar 

  • Lin LH, Talman WT (2006) Vesicular glutamate transporters and neuronal nitric oxide synthase colocalize in aortic depressor afferent neurons. J Chem Neuroanat 32:54–64

    Article  PubMed  CAS  Google Scholar 

  • Lin LH, Cassell MD, Sandra A, Talman WT (1998) Direct evidence for nitric oxide synthase in vagal afferents to the nucleus tractus solitarii. Neuroscience 84:549–558

    Article  PubMed  CAS  Google Scholar 

  • Lin LH, Edwards RH, Fremeau RT, Fujiyama F, Kaneda K, Talman WT (2004) Localization of vesicular glutamate transporters colocalizes with and neuronal nitric oxide synthase in rat nucleus tractus solitarii. Neuroscience 123:247–255

    Article  PubMed  CAS  Google Scholar 

  • Lin LH, Taktakishvili O, Talman WT (2007) Identification and localization of cell types that express endothelial and neuronal nitric oxide synthase in the rat nucleus tractus solitarii. Brain Res 1171:42–51

    Article  PubMed  CAS  Google Scholar 

  • Lin LH, Langasek JE, Talman LS, Taktakishvili OM, Talman WT (2010) Feline immunodeficiency virus as a gene transfer vector in the rat nucleus tractus solitarii. Cell Mol Neurobiol 30:339–346

    Article  PubMed  CAS  Google Scholar 

  • Lonergan T, Teschemacher AG, Hwang DY, Kim KS, Pickering AE, Kasparov S (2005) Targeting brain stem centers of cardiovascular control using adenoviral vectors: impact of promoters on transgene expression. Physiol Genomics 20:165–172

    Article  PubMed  CAS  Google Scholar 

  • Markakis EA, Vives KP, Bober J, Leichtle S, Leranth C, Beecham J, Elsworth JD, Roth RH, Samulski RJ, Redmond DE Jr (2010) Comparative transduction efficiency of AAV vector serotypes 1–6 in the substantia nigra and striatum of the primate brain. Mol Ther 18:588–593

    Article  PubMed  CAS  Google Scholar 

  • Mason MR, Ehlert EM, Eggers R, Pool CW, Hermening S, Huseinovic A, Timmermans E, Blits B, Verhaagen J (2010) Comparison of AAV serotypes for gene delivery to dorsal root ganglion neurons. Mol Ther 18:715–724

    Article  PubMed  CAS  Google Scholar 

  • McCown TJ (2005) Adeno-associated virus (AAV) vectors in the CNS. Curr Gene Ther 5:333–338

    Article  PubMed  CAS  Google Scholar 

  • McCown TJ, Xiao X, Li J, Breese GR, Samulski RJ (1996) Differential and persistent expression patterns of CNS gene transfer by an adeno-associated virus (AAV) vector. Brain Res 713:99–107

    Article  PubMed  CAS  Google Scholar 

  • Michelfelder S, Trepel M (2009) Adeno-associated viral vectors and their redirection to cell-type specific receptors. Adv Genet 67:29–60

    Article  PubMed  CAS  Google Scholar 

  • Naldini L, Blomer U, Gage FH, Trono D, Verma IM (1996) Efficient transfer, integration, and sustained long-term expression of the transgene in adult rat brains injected with a lentiviral vector. Proc Natl Acad Sci USA 93:11382–11388

    Article  PubMed  CAS  Google Scholar 

  • Nattie E (1999) CO2, brainstem chemoreceptors and breathing. Prog Neurobiol 59:299–331

    Article  PubMed  CAS  Google Scholar 

  • Nomoto T, Okada T, Shimazaki K, Mizukami H, Matsushita T, Hanazono Y, Kume A, Katsura K, Katayama Y, Ozawa K (2003) Distinct patterns of gene transfer to gerbil hippocampus with recombinant adeno-associated virus type 2 and 5. Neurosci Lett 340:153–157

    Article  PubMed  CAS  Google Scholar 

  • Palomeque J, Chemaly ER, Colosi P, Wellman JA, Zhou S, Del Monte F, Hajjar RJ (2007) Efficiency of eight different AAV serotypes in transducing rat myocardium in vivo. Gene Ther 14:989–997

    Article  PubMed  CAS  Google Scholar 

  • Sakai K, Hirooka Y, Matsuo I, Eshima K, Shigematsu H, Shimokawa H, Takeshita A (2000) Overexpression of eNOS in NTS causes hypotension and bradycardia in vivo. Hypertension 36:1023–1028

    PubMed  CAS  Google Scholar 

  • Sanlioglu S, Monick MM, Luleci G, Hunninghake GW, Engelhardt JF (2001) Rate limiting steps of AAV transduction and implications for human gene therapy. Curr Gene Ther 1:137–147

    Article  PubMed  CAS  Google Scholar 

  • Sinnayah P, Lindley TE, Staber PD, Cassell MD, Davidson BL, Davisson RL (2002) Selective gene transfer to key cardiovascular regions of the brain: comparison of two viral vector systems. Hypertension 39:603–608

    Article  PubMed  CAS  Google Scholar 

  • Spyer KM, Donoghue S, Felder RB, Jordan D (1984) Processing of afferent inputs in cardiovascular control. Clin Exp Hypertens A A6:173–184

    Article  Google Scholar 

  • Talman WT (1989) Kynurenic acid microinjected into the nucleus tractus solitarius of rat blocks the arterial baroreflex but not responses to glutamate. Neurosci Lett 102:247–252

    Article  PubMed  CAS  Google Scholar 

  • Urabe M, Ding C, Kotin RM (2002) Insect cells as a factory to produce adeno-associated virus type 2 vectors. Hum Gene Ther 13:1935–1943

    Article  PubMed  CAS  Google Scholar 

  • Van Vliet KM, Blouin V, Brument N, Agbandje-McKenna M, Snyder RO (2008) The role of the adeno-associated virus capsid in gene transfer. Methods Mol Biol 437:51–91

    Article  PubMed  Google Scholar 

  • Wakisaka Y, Chu Y, Miller JD, Rosenberg GA, Heistad DD (2010) Spontaneous intracerebral hemorrhage during acute and chronic hypertension in mice. J Cereb Blood Flow Metab 30:56–69

    Article  PubMed  CAS  Google Scholar 

  • Xiao X, Li J, Samulski RJ (1996) Efficient long-term gene transfer into muscle tissue of immunocompetent mice by adeno-associated virus vector. J Virol 70:8098–8108

    PubMed  CAS  Google Scholar 

  • Xiao X, Li J, McCown TJ, Samulski RJ (1997a) Gene transfer by adeno-associated virus vectors into the central nervous system. Exp Neurol 144:113–124

    Article  PubMed  CAS  Google Scholar 

  • Xiao X, McCown TJ, Li J, Breese GR, Morrow AL, Samulski RJ (1997b) Adeno-associated virus (AAV) vector antisense gene transfer in vivo decreases GABA(A) alpha1 containing receptors and increases inferior collicular seizure sensitivity. Brain Res 756:76–83

    Article  PubMed  CAS  Google Scholar 

  • Yang Y, Su Q, Wilson JM (1996) Role of viral antigens in destructive cellular immune responses to adenovirus vector-transduced cells in mouse lungs. J Virol 70:7209–7212

    PubMed  CAS  Google Scholar 

  • Yang L, Scott KA, Hyun J, Tamashiro KL, Tray N, Moran TH, Bi S (2009) Role of dorsomedial hypothalamic neuropeptide Y in modulating food intake and energy balance. J Neurosci 29:179–190

    Article  PubMed  CAS  Google Scholar 

  • Zhong L, Zhou X, Li Y, Qing K, Xiao X, Samulski RJ, Srivastava A (2008) Single-polarity recombinant adeno-associated virus 2 vector-mediated transgene expression in vitro and in vivo: mechanism of transduction. Mol Ther 16:290–295

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. Yi Chu for his help with quantitative real time RT-PCR. This work was funded in part by NIH RO1 HL 59593 (to W. T. Talman) and NIH RO1 HL 088090 (to L. H. Lin and W. T. Talman).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li-Hsien Lin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lin, LH., Dragon, D.N., Jin, J. et al. Targeting Neurons of Rat Nucleus Tractus Solitarii with the Gene Transfer Vector Adeno-Associated Virus Type 2 to Up-Regulate Neuronal Nitric Oxide Synthase. Cell Mol Neurobiol 31, 847–859 (2011). https://doi.org/10.1007/s10571-011-9674-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10571-011-9674-5

Keywords

Navigation