Skip to main content
Log in

Immunocytochemical Localization of TASK-3 (K2P9.1) Channels in Monoaminergic and Cholinergic Neurons

  • Original Research
  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Monoaminergic and cholinergic systems are important regulators of cortical and subcortical systems, and a variety of vegetative functions are controlled by the respective neurotransmitters. Neuronal excitability and transmitter release of these neurons are strongly regulated by their potassium conductances carried by Kir and K2P channels. Here we describe the generation and characterization of a polyclonal monospecific antibody against rat TASK-3, a major brain K2P channel. After removal of cross-reactivities and affinity purification the antibody was characterized by ELISA, immunocytochemistry of TASK-3 transfected cells, and Western blots indicating that the antibody only detects TASK-3 protein, but not its paralogs TASK-1 and TASK-5. Western blot analysis of brain membrane fractions showed a single band around 45 kD, close to the predicted molecular weight of the TASK-3 protein. In addition, specific immunolabeling using the anti-TASK-3 antibody in Western blot analysis and immunocytochemistry was blocked in a concentration dependent manner by its cognate antigen only. Immunocytochemical analysis of rat brain revealed strong expression of TASK-3 channels in serotoninergic neurons of the dorsal and median raphe, noradrenergic neurons of the locus coeruleus, histaminergic neurons of the tuberomammillary nucleus and in the cholinergic neurons of the basal nucleus of Meynert. Immunofluorescence double-labeling experiments with appropriate marker enzymes confirmed the expression of TASK-3 in cholinergic, serotoninergic, and noradrenergic neurons. In the dopaminergic system strong TASK-3 expression was found in the ventral tegmental area, whereas TASK-3 immunoreactivity in the substantia nigra compacta was only weak. All immunocytochemical results were supported by in situ hybridization using TASK-3 specific riboprobes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Aller MI, Veale EL, Linden AM, Sandu C, Schwaninger M, Evans LJ, Korpi ER, Mathie A, Wisden W, Brickley SG (2005) Modifying the subunit composition of TASK channel alters the modulation of a leak conductance in cerebellar granule neurons. J Neurosci 25:11455–11467

    Article  PubMed  CAS  Google Scholar 

  • Bayliss DA, Talley EM, Sirois JE, Lei Q (2001) TASK-1 is a highly modulated pH-sensitive ‘leak’ K(+) channel expressed in brainstem respiratory neurons. Respr Physiol 129:159–174

    Article  CAS  Google Scholar 

  • Ben-Shahar O, Obara I, Ary AW, Ma N, Mangiardi MA, Medina RL, Szumlinski KK (2009) Extended daily access to cocaine results in distinct alterations in Homer 1b/c and NMDA receptor subunit expression within the medial prefrontal cortex. Synapse 63:598–609

    Article  PubMed  CAS  Google Scholar 

  • Berg AP, Talley EM, Manger JP, Bayliss DA (2004) Motoneurons express heteromeric TWIK-related acid-sensitive K+ (TASK) channels containing TASK-1 (KCNK3) and TASK-3 (KCNK9) subunits. J Neurosci 24:6693–6702

    Article  PubMed  CAS  Google Scholar 

  • Bird MK, Reid CA, Chen F, Tan HO, Petrou S, Lawrence AJ (2009) Cocaine-mediated synaptic potentiation is absent in VTA neurons from mGlu5-deficient mice. Int J Neuropsychopharmacol 13:133–141

    Article  PubMed  Google Scholar 

  • Clarke WP, Yocca FD, Maayani S (1996) Lack of 5-hydroxytryptamine1A-mediated inhibition of adenylyl cyclase in dorsal raphe of male and female rats. J Pharmacol Exp Ther 277:1259–1266

    PubMed  CAS  Google Scholar 

  • Clarke CE, Veale EL, Green PJ, Meadows HJ, Mathie A (2004) Selective block of the human 2-P domain potassium channel, TASK-3, and the native leak potassium current, IKSO, by zinc. J Physiol 560:51–62

    Article  PubMed  CAS  Google Scholar 

  • Czirják G, Enyedi P (2002) Formation of functional heterodimers between the TASK-1 and TASK-3 two-pore domain potassium channel subunits. J Biol Chem 277:5426–5432

    Article  PubMed  Google Scholar 

  • Delmas P, Brown DA (2005) Pathways modulating neural KCNQ/M (Kv7) potassium channels. Nat Rev Neurosci 6:850–862

    Article  PubMed  CAS  Google Scholar 

  • Enyedi P, Czirják G (2010) Molecular background of leak K+ currents: two-pore domain potassium channels. Physiol Rev 90:559–605

    Article  PubMed  CAS  Google Scholar 

  • Eulitz D, Prüss H, Derst C, Veh RW (2007) Heterogeneous distribution of Kir3 potassium channel protein within dopaminergic neurons in the mesencephalon of the rat brain. Cell Mol Neurobiol 27:285–302

    Article  PubMed  CAS  Google Scholar 

  • Goldstein SAN, Bockenhauer D, O’Kelly I, Zilberberg N (2001) Potassium leak channels and the KCNK family two-P-domain subunits. Nat Rev Neurosci 2:175–184

    Article  PubMed  CAS  Google Scholar 

  • Harlow E, Lane D (eds) (1988) Antibodies: a laboratory manual. CSH Laboratory Press, Cold Spring Harbor

    Google Scholar 

  • Hibino H, Inanobe A, Furutani K, Murakami S, Findlay I, Kurachi Y (2010) Inwardly rectifying potassium channels: their structure, function, and physiological roles. Physiol Rev 90:291–366

    Article  PubMed  CAS  Google Scholar 

  • Karschin C, Wischmeyer E, Preisig-Müller R, Rajan S, Derst C, Grzeschik KH, Daut J, Karschin A (2001) Expression pattern in brain of TASK-1, TASK-3, and a tandem pore domain K(+) channel subunit, TASK-5, associated with the central auditory nervous system. Mol Cell Neurosci 18:632–648

    Article  PubMed  CAS  Google Scholar 

  • Kim Y, Bang H, Kim D (2000) TASK-3, a new member of the tandem pore K(+) channel family. J Biol Chem 275:9340–9347

    Article  PubMed  CAS  Google Scholar 

  • Kindler CH, Yost CS, Gray AT (1999) Local anesthetic inhibition of baseline potassium channels with two pore domains in tandem. Anesthesiology 90:1092–1102

    Article  PubMed  CAS  Google Scholar 

  • Lesage F, Lazduski M (2000) Molecular and functional properties of two-pore-domain potassium channels. Am J Physiol Renal Physiol 279:793–801

    Google Scholar 

  • Mateos JM, Azkue J, Benítez R, Sarría R, Losada J, Conquet F, Ferraguti F, Kuhn R, Knöpfel T, Grandes P (1998) Immunocytochemical localization of the mGluR1b metabotropic glutamate receptor in the rat hypothalamus. J Comp Neurol 390:225–233

    Article  PubMed  CAS  Google Scholar 

  • Mathie A, Veale EL (2007) Therapeutic potential of neuronal two-pore domain potassium-channel modulators. Curr Opin Investig Drugs 8:555–562

    PubMed  CAS  Google Scholar 

  • Meuth SG, Budee T, Kanyshkova T, Broicher T, Munsch T, Pape HC (2003) Contribution of TWIK-related acid-sensitive K+ channels 1 (TASK1) and TASK3 channels to the control of activity modes in thalamocortical neurons. J Neurosci 23:6460–6469

    PubMed  CAS  Google Scholar 

  • Millar JA, Barratt L, Southan AP, Page KM, Fyffe RE, Robertson B, Mathie A (2000) A functional role for the two-pore domain potassium channel TASK-1 in cerebellar granule neurons. Proc Natl Acad Sci USA 97:3614–3618

    Article  PubMed  CAS  Google Scholar 

  • Noriega NC, Garyfallou VT, Kohama SG, Urbanski HF (2007) Glutamate receptor subunit expression in the rhesus macaque locus coeruleus. Brain Res 1173:53–65

    Article  PubMed  CAS  Google Scholar 

  • O`Conell AD, Morton MJ, Hunter M (2002) Two-pore domain K+ channels-molecular sensors. Biochem Biophys Acta 1566:152–161

    Article  Google Scholar 

  • Pan WJ, Osmanović SS, Shefner SA (1995) Characterization of the adenosine A1 receptor-activated potassium current in rat locus coeruleus neurons. J Pharmacol Exp Ther 273:537–544

    PubMed  CAS  Google Scholar 

  • Patel AJ, Honoré E, Lesage F, Fink M, Romey G, Lazdunski M (1999) Inhalation anaesthetics activate two-pore-domain background K+ channels. Nat Neurosci 2:422–426

    Article  PubMed  CAS  Google Scholar 

  • Pradidarcheep W, Labruyère WT, Dabhoiwala NF, Lamers WH (2008) Lack of specificity of commercially available antisera: better specifications needed. J Histochem Cytochem 56:1099–1111

    Article  PubMed  CAS  Google Scholar 

  • Prüss H, Derst C, Lommel R, Veh RW (2005) Differential distribution of individual subunits of strongly inwardly rectifying potassium channels (Kir2 family) in rat brain. Brain Res Mol Brain Res 139:63–79

    Article  PubMed  Google Scholar 

  • Rajan S, Wischmeyer E, Xin Liu G, Preisig-Müller R, Daut J, Karschin A, Derst C (2000) TASK-3, a novel tandem pore domain acid-sensitive K+ channel. An extracellular histidine as pH sensor. J Biol Chem 275:16650–16657

    Article  PubMed  CAS  Google Scholar 

  • Rajan S, Wischmeyer E, Karschin C, Preisig-Müller R, Grzeschik KH, Daut J, Karschin A, Derst C (2001) THIK-1 and THIK-2, a novel subfamily of tandem pore domain K+ channels. J Biol Chem 276:7302–7311

    Article  PubMed  CAS  Google Scholar 

  • Rasmussen K, Martin H, Berger JE, Seager MA (2005) The mGlu5 receptor antagonists MPEP and MTEP attenuate behavioral signs of morphine withdrawal and morphine-withdrawal-induced activation of locus coeruleus neurons in rats. Neuropharmacology 48:173–180

    Article  PubMed  CAS  Google Scholar 

  • Rivkees SA, Price SL, Zhou FC (1995) Immunohistochemical detection of A1 adenosine receptors in rat brain with emphasis on localization in the hippocampal formation, cerebral cortex, cerebellum, and basal ganglia. Brain Res 677:193–203

    Article  PubMed  CAS  Google Scholar 

  • Saper CB (2009) A guide to the perplexed specificity of antibodies. J Histochem Cytochem 57:1–5

    Article  PubMed  CAS  Google Scholar 

  • Sirois JE, Lei Q, Talley EM, Lynch C, Bayliss DA (2000) The TASK-1 two-pore domain K+ channel is a molecular substrate for neuronal effects of inhalation anesthetics. J Neurosci 20:6347–6354

    PubMed  CAS  Google Scholar 

  • Stamford JA, Davidson C, McLaughlin DP, Hopwood SE (2000) Control of dorsal raphé 5-HT function by multiple 5-HT(1) autoreceptors: parallel purposes or pointless plurality? Trends Neurosci 23:459–465

    Article  PubMed  CAS  Google Scholar 

  • Talley EM, Lei Q, Sirois JE, Bayliss DA (2000) TASK-1, a two-pore domain K+ channel, is modulated by multiple neurotransmitters in motoneurons. Neuron 25:399–410

    Article  PubMed  CAS  Google Scholar 

  • Talley EM, Solorzano G, Lei Q, Kim D, Bayliss DA (2001) CNS distribution of members of the two-pore-domain (KCNK) potassium channel family. J Neurosci 21:7491–7505

    PubMed  CAS  Google Scholar 

  • Veh RW, Lichtinghagen R, Sewing S, Wunder F, Grumbach IM, Pongs O (1995) Immunohistochemical localization of five members of the Kv1 channel subunits: contrasting subcellular locations and neuron-specific co-localizations in rat brain. Eur J Neurosci 7:2189–2205

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are indebted to Sema Ünsal and Heike Heilmann for experienced technical support and to Annett Kaphahn for diligent editorial help.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Christian Derst or Rüdiger W. Veh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marinc, C., Preisig-Müller, R., Prüss, H. et al. Immunocytochemical Localization of TASK-3 (K2P9.1) Channels in Monoaminergic and Cholinergic Neurons. Cell Mol Neurobiol 31, 323–335 (2011). https://doi.org/10.1007/s10571-010-9625-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10571-010-9625-6

Keywords

Navigation