Skip to main content
Log in

The Distribution of Primary Nitric Oxide Synthase- and Parvalbumin- Immunoreactive Afferents in the Dorsal Funiculus of the Lumbosacral Spinal Cord in a Dog

  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

1. The aim of the present study was to examine the distribution of unmyelinated, small-diameter myelinated neuronal nitric oxide synthase immunoreactive (nNOS-IR) axons and large-diameter myelinated neuronal nitric oxide synthase and parvalbumin-immunoreactive (PV-IR) axons in the dorsal funiculus (DF) of sacral (S1–S3) and lumbar (L1–L7) segments of the dog.

2. nNOS and PV immunohistochemical methods were used to demonstrate the presence of nNOS-IR and PV-IR in the large-diameter myelinated, presumed to be proprioceptive, axons in the DF along the lumbosacral segments.

3. Fiber size and density of nNOS-IR and PV-IR axons were used to compartmentalize the DF into five compartments (CI–CV). The first compartment (CI) localized in the lateralmost part of the DF, containing both unmyelinated and small-diameter myelinated nNOS-IR axons, is homologous with the dorsolateral fasciculus, or Lissauer tract. The second compartment (CII) having similar fiber organization as CI is situated more medially in sacral segments. Rostrally, in lower lumbar segments, CII moves more medially, and at upper lumbar level, CII reaches the dorsomedial angle of the DF and fuses with axons of CIV. CIII is the largest in the DF and the only one containing large-diameter myelinated nNOS-IR and PV-IR axons. The largest nNOS-IR and PV-IR axons of CIII (8.0–9.2 μm in diameter), presumed to be stem Ia proprioceptive afferents, are located in the deep portion of the DF close to the dorsal and dorsomedial border of the dorsal horn. The CIV compartment varies in shape, appearing first as a small triangular area in S3 and S2 segments, homologous with the Philippe–Gombault triangle. Beginning at S1 level, CIV acquires a more elongated shape and is seen throughout the lumbar segments as a narrow band of fibers extending just below the dorsal median septum in approximately upper two-thirds of the DF. The CV is located in the basal part of the DF. In general, CV is poor in nNOS-IR fibers; among them solitary PV-IR fibers are seen.

4. The analysis of the control material and the degeneration of the large- and medium-caliber nNOS-IR fibers after unilateral L7 and S1 dorsal rhizotomy confirmed that large-caliber nNOS-IR and and PV-IR axons, presumed to be proprioceptive Ia axons, and their ascending and descending collaterals are present in large number in the DF of the lumbosacral intumescence. However, in the DF of the upper lumbar segments, the decrease in the number of nNOS-IR and PV-IR fibers is quite evident.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.

Similar content being viewed by others

Abbreviations

CI–CV:

fibre compartments in DF

DF:

dorsal funiculus

DRG:

dorsal root ganglion

DREZ-one:

dorsal root entry zone

eNOS:

endothelial nitric oxide synthase

LB:

lateral bundle of the dorsal root

LS:

lumbosacral segments

MB:

medial bundle of the dorsal root

mNOS:

macrophage nitric oxide synthase

NADPHd:

nicotinamide adenine dinucleotide phosphate diaphorase

nNOS-IR:

neuronal nitric oxide synthase immunoreactivity

PV-IR:

parvalbumin immunoreactivity

TPG:

the triangle of Philippe–Gombault.

REFERENCES

  • Altman, J., and Bayer, S. A. (2001). Development of the Human Spinal Cord. An Interpretation Based on Experimental Studies in Animals. Oxford University Press, Oxford.

    Google Scholar 

  • Besson, J. M., and Chaouch, A. (1987). Peripheral and spinal mechanisms of nociception. Physiol. Rev. 67:67–186.

    Google Scholar 

  • Bredt, D. S., Hwang, P. M., and Snyder, S. H. (1990). Localization of nitric oxide synthase indicating a neural role for nitric oxide. Nature 347:768–770.

    Article  Google Scholar 

  • Brodal, A. (1969). Neurological Anatomy. Oxford University Press, New York.

    Google Scholar 

  • Brown, A. G., and Fyffe, R. E. (1978). The morphology of group Ia afferent fiber collaterals in the spinal cord of the cat. J. Physiol. 274:111–127.

    PubMed  CAS  Google Scholar 

  • Brown, A. G., and Fyffe, R. E. (1981). Direct observations on the contacts made between Ia afferent fibres and alpha-motoneurones in the cat’s lumbosacral spinal cord. J. Physiol. 313:121–140.

    PubMed  Google Scholar 

  • Brown, A. G. (1981). Organization in the Spinal Cord: The Anatomy and Physiology of Identified Neurones. Springer-Verlag, Berlin.

    Google Scholar 

  • Celio, M. R. (1990). Calbindin D-28k and parvalbumin in the rat nervous system. Neuroscience 35:375–475.

    Article  Google Scholar 

  • Chung, K., and Coggeshall, R. E. (1985). Unmyelinated primary afferent fibers in dorsal funiculi of cat sacral spinal cord. J. Comp. Neurol. 238:365–369.

    Article  Google Scholar 

  • Chung, K. S., and Coggeshall, R. E. (1987). Postnatal development of the rat dorsal funiculus. J. Neurosci. 7:972–977.

    Google Scholar 

  • Chung, K., Langford, L. A., and Coggeshall, R. E. (1987). Primary afferent and propriospinal fibers in the rat dorsal and dorsolateral funiculi. J. Comp. Neurol. 263:68–75.

    Article  Google Scholar 

  • Chung, K., Sharma, J., and Coggeshall, R. E. (1985). Numbers of myelinated and unmyelinated axons in the dorsal, lateral, and ventral funiculi of the white matter of the S2 segment of cat spinal cord. J. Comp. Neurol. 234:117–121.

    Article  Google Scholar 

  • Clowry, G. J., Arnott, G. A., Clement-Jones, M., Fallah, Z., Gould, S., and Wright, C. (2000). Changing pattern of expression of parvalbumin immunoreactivity during human fetal spinal cord development. J. Comp. Neurol. 423:727–735.

    Article  Google Scholar 

  • Clowry, G. J., Moss, J. A., and Clough, R. L. (2005). An immunohistochemical study of the development of sensorimotor components of the early fetal human spinal cord. J. Anat. 207:313–324.

    Article  Google Scholar 

  • Dekkers, J., Greensmith, L., and Navarrete, R. (2002). Changes in the expression of parvalbumin immunoreactivity in the lumbar spinal cord of the rat following neonatal nerve injury. Dev. Neurosci. 24:283–293.

    Article  Google Scholar 

  • Dinerman, J. L., Dawson, T. M., Schell, M. J., Snowman, A., and Snyder, S. H. (1994). Endothelial nitric oxide synthase localized to hippocampal pyramidal cells: Implications for synaptic plasticity. Proc. Natl. Acad. Sci. USA 91:4214–4218.

    Article  Google Scholar 

  • Fyffe, R. E. W. (1979). The morphology of Group II muscle afferent fiber collaterals. J. Physiol. 296:39–40.

    Google Scholar 

  • Fyffe, R. E. W., and Light, A. R. (1984). The ultrastructure of group Ia afferent fiber synapses in the lumbosacral spinal cord of the cat. Brain Res. 300:201–209.

    Article  PubMed  Google Scholar 

  • Hirshberg, R. M., Al-Chaer, E. D., Lawand, N. B., Westlund, K. N., and Willis, W. D. (1996). Is there pathway in the posterior funiculus that signals visceral pain? Pain 67:291–305.

    Article  Google Scholar 

  • Hongo, T., Kudo, N., Sasaki, S., Yamashita, M., Yoshida, K., Ishizuka, N., and Mannen, H. (1987). Trajectory of group Ia and Ib fibers from the hind-limb muscles at the L3 and L4 segments of the spinal cord of the cat. J. Comp. Neurol. 262:159–194.

    Article  Google Scholar 

  • Ishizuka, N., Mannen, H., Hongo, T., and Sasaki, S. (1979). Trajectory of group Ia afferent fibers stained with horseradish peroxidase in the lumbosacral spinal cord of the cat: Three dimensional reconstructions from serial sections. J. Comp. Neurol. 186:189–212.

    Article  PubMed  Google Scholar 

  • Knyihár-Csillik, E., Rakic, P., and Csillik, B. (1999). Illusive transience of parvalbumin expression during embryonic development of the primate spinal cord. Int. J. Dev. Neurosci. 17:79–97.

    Article  Google Scholar 

  • Kudo, N., and Yamada, T. (1987). Morphological and physiological studies of development of the monosynaptic reflex pathway in the rat lumbar spinal cord. J. Physiol. 389:441–459.

    Google Scholar 

  • Lazorthes, Y., Sol, J. C., Sallerin, B., and Verdié, J. C. (2002). The surgical management of spasticity. Europ. J. Neurol. 9:35–41.

    Article  Google Scholar 

  • Lukáčová, N., Čížková, D., Maršala, M., Lukáč, I., and Maršala, J. (2002). The regional distribution of nitric oxide synthase activity in the spinal cord of the dog. Brain Res. Bull. 58:173–178.

    Article  Google Scholar 

  • Lukáčová, N., Kolesár, D., Maršala, M., and Maršala, J. (2006). Immunohistochemical, histochemical and radioassay analysis of nitric oxide synthase immunoreactivity in the lumbar and sacral dorsal root ganglia of the dog. Cell. Mol. Neurobiol. 26:17–44.

    Article  Google Scholar 

  • Maršala, J., Maršala, M., Vanický, I., and Taira, Y. (1999). Localization of NADPHd-exhibiting neurons in the spinal cord of the rabbit. J. Comp. Neurol. 406:263–284.

    Article  Google Scholar 

  • Maršala, J., Lukáčová, N., Čížková, D., Kafka, J., Katsube, N., Kuchárová, K., and Maršala, M. (2002). The case for the bulbospinal respiratory nitric oxide synthase-immunoreactive pathway in the dog. Exp. Neurol. 177:115–132.

    Article  Google Scholar 

  • Maršala, J., Kluchová, D., and Maršala, M. (1997). Spinal cord gray matter layers rich in NADPH diaphorase-positive neurons are refractory to ischemia-reperfusion-induced injury: a histochemical and silver impregnation study in rabbit. Exp. Neurol. 145:165–179.

    Article  Google Scholar 

  • Maršala, J., Lukáčová, N., Čížková, D., Lukáč, I., Kuchárová, K., and Maršala, M. (2004). Premotor nitric oxide synthase immunoreactive pathway connecting lumbar segments with the ventral motor nucleus of the cervical enlargement in the dog. J. Chem. Neuroanat. 27:43–54.

    Article  Google Scholar 

  • Maršala, J., Lukáčová, N., Kolesár, D., Kuchárová, K., and Maršala, M. (2006). Nitrergic proprioceptive afferents originating from quadriceps femoris muscle are related to monosynaptic Ia-motoneuron stretch reflex circuit in the dog. Cell. Mol. Neurobiol. 26:1385–1410.

    Article  Google Scholar 

  • Maršala, J., Lukáčová, N., Šulla, I., Wohlfahrt, P., and Maršala, M. (2005). The evidence for nitric oxide synthase immunopositivity in the monosynaptic Ia-motoneuron pathway of the dog. Exp. Neurol. 195:161–178.

    Article  Google Scholar 

  • Maršala, J., Maršala, M., Lukáčová, N., Ishikawa, T., and Čížková, D. (2003). Localization and distribution patterns of nicotinamide adenine dinucleotide phosphate diaphorase exhibiting axons in the white matter of the spinal cord of the rabbit. Cell. Mol. Neurobiol. 23:57–92.

    Article  Google Scholar 

  • Maršala, J., Šulla, I., Jalč, P., and Orendáčová, J. (1995). Multiple protracted cauda equina constrictions cause deep derangement in the lumbosacral spinal cord circuitry in the dog. Neurosci. Lett. 193:97–100.

    Article  Google Scholar 

  • Maršala, J., Vanický, I., Maršala, M., Jalč, P., Orendáčová, J., and Taira, Y. (1998). Reduced nicotinamide adenine dinucleotide phosphate diaphorase in the spinal cord of dogs. Neuroscience 85:847– 862.

    Article  Google Scholar 

  • Maxwell, D. J., and Bannatyne, B. A. (1983). Ultrastructure of muscle spindle afferent terminations in lamina VI of the cat spinal cord. Brain Res. 288:297–301.

    Article  PubMed  Google Scholar 

  • Maxwell, D. J., Christie, W. M., Ottersen, O. P., and Storm-Mathisen, J. (1990). Terminals of group Ia primary afferent fibers in Clarkes column are enriched with L-glutamate-like immunoreactivity. Brain Res. 510:346–350.

    Article  Google Scholar 

  • McKenna, K. E., and Nadelhaft, I. (1986). The organization of the pudendal nerve in the male and female rat. J. Comp. Neurol. 22:248:532–549.

    Google Scholar 

  • Molander, C., Ygge, J., and Dalsgaard, C. J. (1987). Substance P-, somatostatin- and calcitonin gene-related peptide-like immunoreactivity and fluoride resistant acid phosphatase-activity in relation to retrogradely labeled cutaneous, muscular and visceral primary sensory neurons in the rat. Neurosci. Lett. 74:37–42.

    Article  Google Scholar 

  • Nicol, M. J., and Walmsley, B. (1991). A serial section electron microscope study of an identified Ia afferent collateral in the cat spinal cord. J. Comp. Neurol. 314:257–277.

    Article  Google Scholar 

  • Orendáčová, J., Čížková, D., Kafka, J., Lukáčová, N., Maršala, M., Sulla, I., Maršala, J., and Katsube, N. (2001). Cauda equina syndrome. Prog. Neurobiol. 64:613–637.

    Article  Google Scholar 

  • Orendáčová, J., Maršala, M., Sulla, I., Kafka, J., Jalč, P., Čížková, D., Taira, Y., and Maršala, J. (2000). Incipient cauda equina syndrome as a model of somatovisceral pain in dogs: Spinal cord structures involved as revealed by the expression of c-fos and NADPH diaphorase activity. Neuroscience 95:543–557.

    Article  Google Scholar 

  • Patterson, J. T., Coggeshall, R. E., Lee, W. T., and Chung, K. (1990). Long ascending unmyelinated primary afferent axons in the rat dorsal column: Immunohistochemical localizations. Neurosci. Lett. 108:6–10.

    Article  Google Scholar 

  • Patterson, J. T., Chung, K., and Coggeshall, R. E. (1992). Further evidence for the existence of long ascending unmyelinated primary afferent fibers within the dorsal funiculus: effects of capsaicin. Pain 49:117–120.

    Article  PubMed  CAS  Google Scholar 

  • Pearson, A. A. (1952). Role of gelatinous substance of spinal cord in conduction of pain. Arch. Neurol. Psych. 68:515–529.

    Google Scholar 

  • Pierce, J. P., and Mendell, L. M. (1993). Quantitative ultrastructure of Ia boutons in the ventral horn: Scaling and positional relationships. J. Neurosci. 13:4748–4763.

    Google Scholar 

  • Ranson, S. W. (1914). An experimental study of Lissauer's tract and the dorsal roots. J. Comp. Neurol. 24:531–545.

    Article  Google Scholar 

  • Sherrington, C. S. (1906). The Integrative Action of the Nervous System. Yale University Press, New Haven.

    Google Scholar 

  • Sindou, M., Quoex, C., and Baleydier, C. (1974). Fiber organization at the posterior spinal cord-rootlet junction in man. J. Comp. Neurol. 153:15–26.

    Article  Google Scholar 

  • Snyder, R. (1977). The organization of the dorsal root entry zone in cats and monkeys. J. Comp. Neurol. 174:47–70.

    Article  Google Scholar 

  • Uddenberg, N. (1968). Functional organization of long, second-order afferents in the dorsal funiculus. Exp. Brain Res. 4:377–382.

    Google Scholar 

  • Walmsley, B., Wieniawa-Narkiewicz, E., and Nicol, M. J. (1985). The ultrastructural basis for synaptic transmission between primary muscle afferents and neurons in Clarke’s column of the cat. J. Neurosci. 5:2095–2106.

    Google Scholar 

  • White, J. C., and Sweet, W. H. (1969). Pain and Neurosurgeon. Thomas, Springfield, IL.

    Google Scholar 

  • Wiklund, N. P., Cellek, S., Leone, A. M., Iversen, H. H., Gustafsson, L. E., Brundin, L., Furst, V. W., Flock, A., and Moncada, S. (1997). Visualisation of nitric oxide released by nerve stimulation. J. Neurosci. Res. 47:224–232.

    Article  Google Scholar 

  • Wiklund, N. P., Iversen, H. H., Leone, A. M., Cellek, S., Brundin, L., Gustafsson, L. E., and Moncada, S. (1999). Visualization of nitric oxide formation in cell cultures and living tissue. Acta Physiol. Scand. 167:161–166.

    Article  Google Scholar 

  • Willis, W. D., Al-Chaer, E. D., Quast, M. J., and Westlund, K. N. (1999). A visceral pain pathway in the dorsal column of the spinal cord. Proc. Natl. Acad. Sci. USA 96:7675–7679.

    Article  Google Scholar 

  • Willis, W. D., and Coggeshall, R. E. (1991). Sensory Mechanisms of the Spinal Cord, Plenum Press, New York.

    Google Scholar 

  • Willis, W. D., and Westlund, K. N. (1997). Neuroanatomy of the pain system and of the pathways that modulate pain. J. Clinic. Neurophysiol. 14:2–31.

    Article  Google Scholar 

  • Zhang, J. H., Morita, Y., Hironaka, T., Emson, P. C., and Tohyama, M. (1990). Ontological study of calbindin-D28k-like and parvalbumin-like immunoreactivities in rat spinal cord and dorsal root ganglia. J. Comp. Neurol. 302:715–728.

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank Mr. D. Krokavec, Ms. M. Špontáková, Mrs. M. Syneková, and Mrs. A.M. Košová for their excellent technical assistance. The experimental work was supported by the VEGA Grants No. 2/3217/23 and 2/5134/25 from the SAS, APVT Grant No. 51-013002, and NIH grants NS 32794 and NS 40386 to M.M.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jozef Maršala.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maršala, J., Lukáčová, N., Kolesár, D. et al. The Distribution of Primary Nitric Oxide Synthase- and Parvalbumin- Immunoreactive Afferents in the Dorsal Funiculus of the Lumbosacral Spinal Cord in a Dog. Cell Mol Neurobiol 27, 475–504 (2007). https://doi.org/10.1007/s10571-007-9140-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10571-007-9140-6

KEY WORDS:

Navigation