Skip to main content
Log in

Synaptically Activated Ca2+ Release From Internal Stores in CNS Neurons

  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Synaptically activated postsynaptic [Ca2+] i increases occur through three main pathways: Ca2+ entry through voltage-gated Ca2+ channels, Ca2+ entry through ligand-gated channels, and Ca2+ release from internal stores. The first two pathways have been studied intensively; release from stores has been the subject of more recent investigations.

Ca2+ release from stores in CNS neurons primarily occurs as a result of IP3 mobilized by activation of metabotropic glutamatergic and/or cholingergic receptors coupled to PLC. Ca2+ release is localized near spines in Purkinje cells and occurs as a wave in the primary apical dendrites of pyramidal cells in the hippocampus and cortex. The amplitude of the [Ca2+] i increase can reach several micromolar, significantly larger than the increase due to backpropagating spikes.

The large amplitude, long duration, and unique location of the [Ca2+] i increases due to Ca2+ release from stores suggests that these increases can affect specific downstream signaling mechanisms in neurons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alford, S., Frenguelli, B. G., Schofield, J. G., and Collingridge, G. L. (1993). Characterization of Ca2+ signals induced in hippocampal CA1 neurones by the synaptic activation of NMDA receptors. J. Physiol. 469:693–716.

    CAS  PubMed  Google Scholar 

  • Bannister, N. J., and Larkman, A. U. (1995). Dendritic morphology of CA1 pyramidal neurones from the rat hippocampus: II. Spine distributions. J. Comp. Neurol. 360:161–171.

    Article  CAS  PubMed  Google Scholar 

  • Berridge, M. J. (1998). Neuronal calcium signaling. Neuron. 21:13–26.

    Article  CAS  PubMed  Google Scholar 

  • Bezprozvanny, I., Watras, J., and Ehrlich, B. E. (1991). Bell-shaped calcium-response curves of Ins(1,4,5)P3 and calcium gated channels from endoplasmic reticulum of cerebellum. Nature. 351:751–754.

    Article  CAS  PubMed  Google Scholar 

  • Bootman, M. D., and Berridge, M. J. (1996). Subcellular Ca2+ signals underlying waves and graded responses in HeLa cells. Curr. Biol. 6:855–865.

    Article  CAS  PubMed  Google Scholar 

  • Bootman, M. D., Niggli, E., Berridge, M. J., and Lipp, P. (1997). Imaging the heirarchal Ca2+ signalling system in HeLa cells. J. Physiol. 499:307–314.

    CAS  PubMed  Google Scholar 

  • Brown, S. P., Brenowitz, S. D., and Regehr, W. G. (2003). Brief presynaptic bursts evoke synapse-specific retrograde inhibition mediated by endogenous cannabinoids. Nat. Neurosci. 6:1048–1057.

    CAS  PubMed  Google Scholar 

  • Callamaras, N., Marchant, J. S., Sun, X.-P., and Parker, I. (1998). Activation and coordination of InsP3-mediated elementary Ca2+ events during global Ca2+ signals in Xenopus oocytes. J. Physiol. 509:81–91.

    CAS  PubMed  Google Scholar 

  • Callaway, J. C., and Ross, W. N. (1995). Frequency-dependent propagation of sodium action potentials in dendrites of hippocampal CA1 pyramidal neurons. J. Neurophysiol. 74:1395–1403.

    CAS  PubMed  Google Scholar 

  • Chen, W. R., Midtgaard, J., and Shepherd, G. M. (1997). Forward and backward propagation of dendritic impulses and their synaptic control in mitral cells. Science. 278:463–467.

    CAS  PubMed  Google Scholar 

  • Daw, M. I., Bortolotto, Z. A., Saulle, E., Zaman, S., Collingridge, G. L., and Isaac, J. T. (2002). Phosphatidylinositol 3 kinase regulates synapse specificity of hippocampal long-term depression. Nature Neurosci. 5:835–836

    CAS  PubMed  Google Scholar 

  • Dudek, S. M., and Fields, R. D. (2002). Somatic action potentials are sufficient for late-phase LTP-related cell signaling. Proc. Natl. Acad. Sci. USA 99:3962–3967.

    CAS  PubMed  Google Scholar 

  • Emptage, N., Bliss, T. V. P., and Fine, A. (1999). Single synaptic events evoke NMDA receptor-mediated release of calcium from internal stores in hippocampal dendritic spines. Neuron 22:115–124.

    CAS  PubMed  Google Scholar 

  • Finch, E. A., and Augustine, G. J. (1998). Local calcium signaling by inositol-1,4,5-trisphosphate in Purkinje cell dendrites. Nature. 396:753–756.

    CAS  PubMed  Google Scholar 

  • Finch, E. A., Turner, T. J., and Goldin, S. M. (1991). Calcium as a coagonist of inositol 1,4,5-trisphosphate-induced calcium release. Science 252:443–446.

    CAS  PubMed  Google Scholar 

  • Garaschuk, O., Yaari, Y., and Konnerth, A. (1997). Release and sequestration of calcium by ryanodine-sensitive stores in rat hippocampal neurones. J. Physiol. 502:13–30.

    CAS  PubMed  Google Scholar 

  • Goldberg, J. H., Tamas, G., and Yuste, R. (2003). Ca2+ imaging of mouse neocortical interneurone dendrites: Ia-type K+ channels control action potential backpropagation. J. Physiol. 551:49–65.

    CAS  PubMed  Google Scholar 

  • Hausser, M., Stuart, G., Racca, C., and Sakmann, B. (1995). Axonal initiation and active dendritic propagation of action potentials in substantia nigra neurons. Neuron. 15:637–647.

    CAS  PubMed  Google Scholar 

  • Helmchen, F., Imoto, K., and Sakmann, B. (1996). Ca2+ buffering and action potential-evoked Ca2+ signaling in dendrites of pyramidal neurons. Biophys. J. 70:1069–1081.

    CAS  PubMed  Google Scholar 

  • Iino, M. (1990). Biphasic Ca2+ dependence of inositol 1,4,5-trisphosphate-induced Ca2+ release in smooth muscle cells of the guinea pig taenia caeci. J. Gen. Physiol. 95:1103–1122.

    CAS  PubMed  Google Scholar 

  • Irving, A. J., and Collingridge, G. L. (1998). A characterization of muscarinic receptor-mediated intracellular Ca2+ mobilization in cultured rat hippocampal neurones. J. Physiol. 511:747–759.

    CAS  PubMed  Google Scholar 

  • Jaffe, D. B., and Brown, T. H. (1994). Metabotropic glutamate receptor activation induces calcium waves within hippocampal dendrites. J. Neurophysiol. 72:471–474.

    CAS  PubMed  Google Scholar 

  • Jaffe, D. B., Johnston, D., Lasser-Ross, N., Lisman, J. E., Miyakawa, H., and Ross, W. N. (1992). The spread of Na+ spikes determines the pattern of dendritic Ca2+ entry into hippocampal neurons. Nature 357:244–246.

    CAS  PubMed  Google Scholar 

  • Kapur, A., Yeckel, M., and Johnston, D. (2001). Hippocampal mossy fiber activity evokes Ca2+ release in CA3 pyramidal neurons via a metabotropic glutamate receptor pathway. Neuroscience 107:59–69.

    CAS  PubMed  Google Scholar 

  • Klee, C. B. (1988). Interaction of calmodulin with Ca2+ and target proteins. In Cohen, P., and Klee, C. B. (ed.), Calmodulin, Elsevier, Amsterdam, pp. 35–56.

    Google Scholar 

  • Koester, H. J., and Sakmann, B. (1998). Calcium dynamics in single spines during coincident pre- and postsynaptic activity depend on relative timing of back-propagating action potentials and subthreshold excitatory synaptic potentials. Proc. Natl. Acad. Sci. USA. 95:9596–9601.

    CAS  PubMed  Google Scholar 

  • Koizumi, S., Bootman, M. D., Babanovic, L. K., Schell, M. J., Berridge, M. J., and Lipp, P. (1999). Characterization of elementary Ca2+ release signals in NGF-differentiated PC12 cells and hippocampal neurons. Neuron. 22:125–137.

    CAS  PubMed  Google Scholar 

  • Kovalchuk, Y., Eilers, J., Lisman, J., and Konnerth, A. (2000). NMDA receptor-mediated subthreshold Ca2+ signals in spines of hippocampal neurons. J. Neurosci. 20:1791–1799.

    CAS  PubMed  Google Scholar 

  • Larkum, M., Watanabe, S., Nakamura, T., Lasser-Ross, N., and Ross, W. N. (2003). Synaptically activated Ca2+ waves in layer 2/3 and layer 5 rat neocortical pyramidal neurons. J. Physiol. 549:471–488.

    CAS  PubMed  Google Scholar 

  • Lautermilch, N. J., and Spitzer, N. C. (2000). Regulation of calcineurin by growth cone calcium waves controls neurite extension. J. Neurosci. 20:315–325

    CAS  PubMed  Google Scholar 

  • Lohmann, C., Myhr, K. L., and Wong, R. O. L. (2002). Transmitter-evoked local calcium release stabilizes developing dendrites. Nature 418:177–181

    CAS  PubMed  Google Scholar 

  • Magee, J. C. (1999). Voltage gated ion channels in dendrites. In Stuart, G., Spruston, N., and Hausser, M. (ed.), Dendrites, Oxford, New York., pp. 139–160.

    Google Scholar 

  • Magee, J. C., and Johnston, D. (1995). Synaptic activation of voltage-gated channels in the dendrites of hippocampal pyramidal neurons. Science 268:301–304.

    CAS  PubMed  Google Scholar 

  • Majewska, A., Brown, E., Ross, J., and Yuste, R. (2000). Mechanisms of calcium decay kinetics in hippocampal spines: Role of spine calcium pumps and calcium diffusion through the spine neck in biochemical compartmentalization. J. Neurosci. 20:1722–1734.

    CAS  PubMed  Google Scholar 

  • Maravall, M., Mainen, Z. F., Sabatini, B. L., and Svoboda, K. (2000). Estimating intracellular calcium concentrations and buffering without wavelength ratioing. Biophys. J. 78:2655–2667.

    CAS  PubMed  Google Scholar 

  • Marchant, J. S., and Parker, I. (2001). Role of elementary Ca2+ puffs in generating repetitive Ca2+ oscillations. EMBO J. 20:65–76.

    CAS  PubMed  Google Scholar 

  • Markram, H., Helm, P. J., and Sakmann, B. (1995). Dendritic calcium transients evoked by single back-propagating action potentials in rat neocortical pyramidal neurons. J. Physiol. 485:1–20.

    CAS  PubMed  Google Scholar 

  • Morikawa, H., Khodakhah, K., and Williams, J. T. (2003). Two intracellular pathways mediate metabotropic glutamate receptor-induced Ca2+ mobilization in dopamine neurons. J. Neurosci. 23:149–157.

    CAS  PubMed  Google Scholar 

  • Nakamura, T., Barbara, J.-G., Nakamura, K., and Ross, W. N. (1999). Synergistic release of Ca2+ from IP3-sensitive stores evoked by synaptic activation of mGluRs paired with backpropagating action potentials. Neuron 24:727–737.

    CAS  PubMed  Google Scholar 

  • Nakamura, T., Lasser-Ross, N., Nakamura, K., and Ross, W. N. (2002). Spatial segregation and interaction of calcium signalling mechanisms in rat hippocampal CA1 pyramidal neurons. J. Physiol. 543:465–480.

    CAS  PubMed  Google Scholar 

  • Nishiyama, M., Hong, K., Mikoshiba, K., Poo, M. M., and Kato, K. (2000). Calcium stores regulate the polarity and input specificity of synaptic modification. Nature 408:584–588.

    CAS  PubMed  Google Scholar 

  • Petrozzino, J. J., Pozzo Miller, L. D., and Connor, J. A. (1995). Micromolar Ca2+ transients in dendritic spines of hippocampal pyramidal neurons in brain slice. Neuron. 14:1223–1231.

    CAS  PubMed  Google Scholar 

  • Poolos, N. P., Migliore, M., and Johnston. D. (2002). Pharmacological upregulation of h-channels reduces the excitability of pyramidal neuron dendrites. Nature Neurosci. 5:767–774.

    CAS  PubMed  Google Scholar 

  • Power, J. M., and Sah, P. (2002). Nuclear calcium signaling evoked by cholinergic stimulation in hippocampal CA1 pyramidal neurons. J. Neurosci. 22:3454–3462.

    CAS  PubMed  Google Scholar 

  • Pozzo Miller, L. D., Petrozzino, J. J., Golarai, G., and Connor, J. A. (1996). Ca2+ release from intracellular stores induced by afferent stimulation of CA3 pyramidal neurons in hippocampal slices. J. Neurophysiol. 76:554–562.

    PubMed  Google Scholar 

  • Regehr, W. G., and Tank, D. W. (1992). Calcium concentration dynamics produced by synaptic activation of CA1 hippocampal pyramidal cells. J. Neurosci. 12:4202–4223.

    CAS  PubMed  Google Scholar 

  • Reyes, M., and Stanton, P. K. (1996). Induction of hippocampal long-term depression requires release of Ca2+ from separate presynaptic and postsynaptic intracellular stores. J. Neurosci. 16:5951–5960

    CAS  PubMed  Google Scholar 

  • Sabatini, B. L., Oertner, T. G., and Svoboda, K. (2002). The life cycle of Ca2+ ions in dendritic spines. Neuron 33: 439–452

    CAS  PubMed  Google Scholar 

  • Sandler, V. M., and Ross, W. N. (1999). Serotonin modulates spike backpropagation and associated [Ca2+] i changes in the apical dendrites of hippocampal CA1 pyramidal neurons. J. Neurophysiol. 81:216–224.

    CAS  PubMed  Google Scholar 

  • Schiller, J., Helmchen, F., and Sakmann, B. (1995). Spatial profile of dendritic calcium transients evoked by action potentials in rat neocortical pyramidal neurones. J. Physiol. 487:583–600.

    CAS  PubMed  Google Scholar 

  • Seymour-Laurent, K. J., and Barish, M. E. (1995). Inositol 1,4,5-trisphosphate and ryanodine receptor distributions and patterns of acetylcholine- and caffeine-induced calcium release in cultured mouse hippocampal neurons. J. Neurosci. 15:2592–2608.

    CAS  PubMed  Google Scholar 

  • Sharp, A. H., McPherson, P. S., Dawson, T. M., Aoki, C., Campbell, K. P., and Snyder, S. H. (1993). Differential immunohistochemical localization of inositol 1,4,5-trisphosphate- and ryanodine-sensitive Ca2+ release channels in rat brain. J. Neurosci. 13:3051–3063.

    CAS  PubMed  Google Scholar 

  • Shirasaki, T., Harata, N., and Akaike, N. (1994). Metabotropic glutamate response in acutely dissociated hippocampal CA1 pyramidal neurones of the rat. J. Physiol. 475:439–453.

    CAS  PubMed  Google Scholar 

  • Spruston, N., Schiller, Y., Stuart, G., and Sakmann, B. (1995). Activity-dependent action potential invasion and calcium influx into hippocampal CA1 dendrites. Science 268:297–300.

    CAS  PubMed  Google Scholar 

  • Stuart, G., and Hausser, M. (1994). Initiation and spread of sodium action potentials in cerebellar Purkinje cells. Neuron 13:703–712.

    CAS  PubMed  Google Scholar 

  • Stuart, G., and Sakmann, B. (1994). Active propagation of somatic action potentials into neocortical pyramidal cell dendrites. Nature 367:69–72.

    CAS  PubMed  Google Scholar 

  • Takechi, H., Eilers, J., and Konnerth, A. (1998). A new class of synaptic response involving calcium release in dendritic spines. Nature 396:757–760.

    CAS  PubMed  Google Scholar 

  • Tsubokawa, H., and Ross, W. N. (1996). IPSPs modulate spike backpropagation and associated [Ca2+] i changes in the dendrites of hippocampal CA1 pyramidal neurons. J. Neurophysiol. 76:2896–2906.

    CAS  PubMed  Google Scholar 

  • Tsubokawa, H., and Ross, W. N. (1997). Muscarinic modulation of spike backpropagation in the apical dendrites of hippocampal CA1 pyramidal neurons. J. Neurosci. 17:5782–5791.

    CAS  PubMed  Google Scholar 

  • Turner, R. W., Meyers, D. E., Richardson, T. L., and Barker, J. L. (1991). The site for initiation of action potential discharge over the somatodendritic axis of hippocampal CA1 pyramidal cell neurons. J. Neurosci. 11:2270–2280.

    CAS  PubMed  Google Scholar 

  • Wang, S. S.-H., Denk, W., and Hausser, M. (2000). Coincidence detection in single dendritic spines mediated by calcium release. Nat. Neurosci. 3:1266–1273.

    CAS  PubMed  Google Scholar 

  • Yao, Y., and Parker, I. (1992). Potentiation of inositol trisphosphate-induced Ca2+ mobilization in Xenopus oocytes by cytosolic Ca2+. J. Physiol. 458:319–338.

    CAS  PubMed  Google Scholar 

  • Yeckel, M. F., Kapur, A., and Johnston, D. (1999). Multiple forms of LTP in hippocampal CA3 neurons use a common postsynaptic mechanism. Nat. Neurosci. 2:625–633.

    PubMed  Google Scholar 

  • Yuste, R., and Denk, W. (1995). Dendritic spines as basic functional units of neuronal integration. Nature 375:682–684.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William N. Ross.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ross, W.N., Nakamura, T., Watanabe, S. et al. Synaptically Activated Ca2+ Release From Internal Stores in CNS Neurons. Cell Mol Neurobiol 25, 283–295 (2005). https://doi.org/10.1007/s10571-005-3060-0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10571-005-3060-0

Keywords

Navigation