Skip to main content

Advertisement

Log in

Polysaccharides, as biological macromolecule-based scaffolding systems in heart valve tissue engineering: a review

  • Review Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Valvular heart disease is a major clinical challenge with significant morbidity and mortality rate. Generally, valve repair is advantageous over replacement, however most of these valves are impossible to repair. Donor shortage has resulted in long waiting lists, and the need for heart valve replacement is estimated to triple in the coming years. In addition, the use of mechanical and bioprosthetic heart valves is associated with several challenges such as thrombogenicity, short durability, and the need for repeated surgeries for valve replacement. Heart valve tissue engineering (HVTE) has recently offered new solutions to address these shortcomings. In this endeavour, material selection and optimization are of vital importance. Among different scaffolding biomaterials, the appeal of polysaccharides in HVTE is on the rise. Due to their excellent biocompatibility, tailorable properties, low cost, and availability, these biomaterials have been widely explored as scaffolding systems for HVTE. The current review will discuss applications, challenges, and future perspectives of these biomaterials in HVTE.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Reproduced with permission from reference (Aguilar et al. 2019)

Fig. 5
Fig. 6

Reproduced with permission from reference (Naomi et al. 2020)

Fig. 7

Reproduced with permission from reference (Kobayashi et al. 2020)

Fig. 8

Reproduced with permission from reference (Gallyamov et al. 2014)

Fig. 9 

Reproduced with permission from reference (Duan et al. 2013b)

Fig. 10

Reproduced with permission from reference (Duan et al. 2013b)

Fig. 11

Reproduced with permission from reference (Duan et al. 2013b)

Fig. 12

Reproduced with permission from reference (Rodriguez et al. 2011)

Fig. 13
Fig. 14

Reproduced with permission from reference (Sewell-Loftin et al. 2014)

Fig. 15

Reproduced with permission from reference (Duan et al. 2014)

Similar content being viewed by others

References

  • Abatangelo G, Vindigni V, Avruscio G, Pandis L, Brun P (2020) Hyaluronic acid: redefining its role. Cells. https://doi.org/10.3390/cells9071743

    Article  PubMed  PubMed Central  Google Scholar 

  • Aguilar A, Zein N, Harmouch E, Hafdi B, Bornert F, Offner D, Clauss F, Fioretti F, Huck O, Benkirane-Jessel N, Hua G (2019) Application of chitosan in bone and dental engineering. Molecules 24:3009. https://doi.org/10.3390/molecules24163009

    Article  CAS  PubMed Central  Google Scholar 

  • Ahmad M, Manzoor K, Singh S, Ikram S (2017) Chitosan centered bionanocomposites for medical specialty and curative applications: a review. Int J Pharm 529:200–217. https://doi.org/10.1016/j.ijpharm.2017.06.079

    Article  CAS  PubMed  Google Scholar 

  • Ahmed S, Ali A, Sheikh J (2018) A review on chitosan centred scaffolds and their applications in tissue engineering. Int J Biol Macromol 116:849–862

    Article  CAS  PubMed  Google Scholar 

  • Ahmed F, Soliman FM, Adly MA, Soliman HAM, El-Matbouli M, Saleh M (2019) Recent progress in biomedical applications of chitosan and its nanocomposites in aquaculture: a review. Res Vet Sci 126:68–82. https://doi.org/10.1016/j.rvsc.2019.08.005

    Article  CAS  PubMed  Google Scholar 

  • Ahsan SM, Thomas M, Reddy KK, Sooraparaju SG, Asthana A, Bhatnagar I (2018) Chitosan as biomaterial in drug delivery and tissue engineering. Int J Biol Macromol 110:97–109

    Article  CAS  PubMed  Google Scholar 

  • Aki D, Ulag S, Unal S, Sengor M, Ekren N, Lin C-C, Yılmazer H, Ustundag CB, Kalaskar DM, Gunduz O (2020) 3D printing of PVA/hexagonal boron nitride/bacterial cellulose composite scaffolds for bone tissue engineering. Mater Des 196:109094

    Article  CAS  Google Scholar 

  • Albanna MZ, Bou-Akl TH, Walters HL III, Matthew HW (2012) Improving the mechanical properties of chitosan-based heart valve scaffolds using chitosan fibers. J Mech Behav Biomed Mater 5:171–180

    Article  CAS  PubMed  Google Scholar 

  • Amrollahi P, Tayebi L (2016) Bioreactors for heart valve tissue engineering: a review. J Chem Technol Biotechnol 91:847–856

    Article  CAS  Google Scholar 

  • An S, Choi S, Min S, Cho S-W (2021) Hyaluronic acid-based biomimetic hydrogels for tissue engineering and medical applications. Biotechnol Bioprocess Eng 26:503–516

    Article  CAS  Google Scholar 

  • Antony R, Arun T, Manickam STD (2019) A review on applications of chitosan-based Schiff bases. Int J Biol Macromol 129:615–633. https://doi.org/10.1016/j.ijbiomac.2019.02.047

    Article  CAS  PubMed  Google Scholar 

  • Arackal A, Alsayouri K (2020) Histology, Heart. StatPearls [Internet]

  • Balagangadharan K, Dhivya S, Selvamurugan N (2017) Chitosan based nanofibers in bone tissue engineering. Int J Biol Macromol 104:1372–1382. https://doi.org/10.1016/j.ijbiomac.2016.12.046

    Article  CAS  PubMed  Google Scholar 

  • Basu B (2017) Biomaterials science and tissue engineering: principles and methods. Cambridge University Press, Cambridge

    Google Scholar 

  • Bazan O, Simbara MM, Ortiz JP, Malmonge SM, Andrade A, Yanagihara JI (2019) In vitro hydrodynamic evaluation of a scaffold for heart valve tissue engineering. Artif Organs 43:195–198

    Article  CAS  PubMed  Google Scholar 

  • Bidarra SJ, Barrias CC, Granja PL (2014) Injectable alginate hydrogels for cell delivery in tissue engineering. Acta Biomater 10:1646–1662

    Article  CAS  PubMed  Google Scholar 

  • Boroumand S, Asadpour S, Akbarzadeh A, Faridi-Majidi R, Ghanbari H (2018) Heart valve tissue engineering: an overview of heart valve decellularization processes. Regen Med 13:41–54

    Article  CAS  PubMed  Google Scholar 

  • Bouten CV, Smits AI, Baaijens F (2018) Can we grow valves inside the heart? Perspective on material-based in situ heart valve tissue engineering. Front Cardiovasc Med 5:54

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bruder L, Spriestersbach H, Brakmann K, Stegner V, Sigler M, Berger F, Schmitt B (2018) Transcatheter decellularized tissue-engineered heart valve (dTEHV) grown on polyglycolic acid (PGA) scaffold coated with P4HB shows improved functionality over 52 weeks due to polyether-ether-ketone (PEEK) insert. J Funct Biomater 9:64

    Article  CAS  PubMed Central  Google Scholar 

  • Chainoglou E, Karagkiozaki V, Choli-Papadopoulou T, Mavromanolis C, Laskarakis A, Logothetidis S (2016) Development of biofunctionalized cellulose acetate nanoscaffolds for heart valve tissue engineering. World J Nano Science Eng 6:129

    Article  CAS  Google Scholar 

  • Chambers JB, Ray S, Prendergast B, Taggart D, Westaby S, Grothier L, Arden C, Wilson J, Campbell B, Sandoe J (2013) Specialist valve clinics: recommendations from the British Heart Valve Society working group on improving quality in the delivery of care for patients with heart valve disease. BMJ Publishing Group Ltd and British Cardiovascular Society

  • Chanda J (1995) Prevention of calcification of heart valve bioprostheses: an experimental study in rat. Ann Thorac Surg 60:S339–S342

    Article  CAS  PubMed  Google Scholar 

  • Chawla D, Kaur T, Joshi A, Singh N (2020) 3D bioprinted alginate-gelatin based scaffolds for soft tissue engineering. Int J Biol Macromol 144:560–567

    Article  CAS  PubMed  Google Scholar 

  • Chen Y, Long X, Lin W, Du B, Yin H, Lan W, Zhao D, Li Z, Li J, Luo F (2021) Bioactive 3D porous cobalt-doped alginate/waterborne polyurethane scaffolds with a coral reef-like rough surface for nerve tissue engineering application. J Mater Chem B 9:322–335

    Article  CAS  PubMed  Google Scholar 

  • Chernysheva MG, Chaschin IS, Sinolits AV, Vasilev VG, Popov AG, Badun GA, Bakuleva NP (2020) Chitosan-nanodiamond composites for improving heart valve biological prostheses materials: preparation and mechanical trial. Fuller, Nanot, Carbon, Nanostruct 28:256–261

    Article  CAS  Google Scholar 

  • Chester AH, Grande-Allen KJ (2020) Which biological properties of heart valves are relevant to tissue engineering? Front Cardiovasc Med 7:63

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chircov C, Grumezescu AM, Bejenaru LE (2018) Hyaluronic acid-based scaffolds for tissue engineering. Rom J Morphol Embryol 59:71–76

    PubMed  Google Scholar 

  • Choi S, Lee JS, Shin J, Lee MS, Kang D, Hwang NS, Lee H, Yang HS, Cho S-W (2020) Osteoconductive hybrid hyaluronic acid hydrogel patch for effective bone formation. J Controlled Release 327:571–583

    Article  CAS  Google Scholar 

  • Collins MN, Birkinshaw C (2013) Hyaluronic acid based scaffolds for tissue engineering—A review. Carbohydr Polym 92:1262–1279

    Article  CAS  PubMed  Google Scholar 

  • Courtenay JC, Johns MA, Galembeck F, Deneke C, Lanzoni EM, Costa CA, Scott JL, Sharma RI (2017) Surface modified cellulose scaffolds for tissue engineering. Cellulose 24:253–267

    Article  CAS  PubMed  Google Scholar 

  • Cuy JL, Beckstead BL, Brown CD, Hoffman AS, Giachelli CM (2003) Adhesive protein interactions with chitosan: Consequences for valve endothelial cell growth on tissue-engineering materials. J Biomed Mater Res Part a: an off J Soci Biomater, Japanese Soci Biomater, Austral Soci Biomater Korean Soci Biomater 67:538–547

    Article  CAS  Google Scholar 

  • Dan AK, Manna A, Ghosh S, Sikdar S, Sahu R, Parhi PK, Parida S (2021) Molecular mechanisms of the lipopeptides from Bacillus subtilis in the apoptosis of cancer cells-A review on its current status in different cancer cell lines. Adv Cancer Biol-Metas 3:100019

    Article  CAS  Google Scholar 

  • Dawidowska K, Siondalski P, Kołaczkowska M (2020) In vitro study of a stentless aortic bioprosthesis made of bacterial cellulose. Cardiovasc Eng Technol 11:646–654

    Article  PubMed  PubMed Central  Google Scholar 

  • Del Gaudio C, Grigioni M, Bianco A, De Angelis G (2008) Electrospun bioresorbable heart valve scaffold for tissue engineering. Int J Artif Organs 31:68–75

    Article  PubMed  Google Scholar 

  • Dinoro J, Maher M, Talebian S, Jafarkhani M, Mehrali M, Orive G, Foroughi J, Lord MS, Dolatshahi-Pirouz A (2019) Sulfated polysaccharide-based scaffolds for orthopaedic tissue engineering. Biomaterials 214:119214

    Article  CAS  PubMed  Google Scholar 

  • Dohmen PM, Konertz W (2009) Review tissue-engineered heart valve scaffolds. Ann Thorac Cardiovasc Surg 15:363

    Google Scholar 

  • Dong R, Ma PX, Guo B (2020) Conductive biomaterials for muscle tissue engineering. Biomaterials 229:119584

    Article  CAS  PubMed  Google Scholar 

  • Dovedytis M, Liu ZJ, Bartlett S (2020) Hyaluronic acid and its biomedical applications: a review. Engineered Regeneration 1:102–113

    Article  Google Scholar 

  • Du J, Zhu T, Yu H, Zhu J, Sun C, Wang J, Chen S, Wang J, Guo X (2018) Potential applications of three-dimensional structure of silk fibroin/poly (ester-urethane) urea nanofibrous scaffold in heart valve tissue engineering. Appl Surf Sci 447:269–278

    Article  CAS  Google Scholar 

  • Duan B, Hockaday LA, Kang KH, Butcher JT (2013a) 3D bioprinting of heterogeneous aortic valve conduits with alginate/gelatin hydrogels. J Biomed Mater Res A 101:1255–1264

    Article  PubMed  CAS  Google Scholar 

  • Duan B, Hockaday LA, Kapetanovic E, Kang KH, Butcher JT (2013b) Stiffness and adhesivity control aortic valve interstitial cell behavior within hyaluronic acid based hydrogels. Acta Biomater 9:7640–7650

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duan B, Kapetanovic E, Hockaday LA, Butcher JT (2014) Three-dimensional printed trileaflet valve conduits using biological hydrogels and human valve interstitial cells. Acta Biomater 10:1836–1846

    Article  CAS  PubMed  Google Scholar 

  • Ehterami A, Salehi M, Farzamfar S, Samadian H, Vaez A, Ghorbani S, Ai J, Sahrapeyma H (2019) Chitosan/alginate hydrogels containing Alpha-tocopherol for wound healing in rat model. J Drug Deliv Sci Technol 51:204–213

    Article  CAS  Google Scholar 

  • Fallahiarezoudar E, Ahmadipourroudposht M, Yusof NM, Idris A, Ngadiman NHA (2017) 3D biofabrication of thermoplastic polyurethane (TPU)/poly-L-lactic acid (PLLA) electrospun nanofibers containing maghemite (γ-Fe2O3) for tissue engineering aortic heart valve. Polymers 9:584

    Article  PubMed Central  CAS  Google Scholar 

  • Farokhi M, Jonidi Shariatzadeh F, Solouk A, Mirzadeh H (2020) Alginate based scaffolds for cartilage tissue engineering: a review. Int J Polym Mater Polym Biomater 69:230–247

    Article  CAS  Google Scholar 

  • Fioretta ES, Dijkman PE, Emmert MY, Hoerstrup SP (2018) The future of heart valve replacement: recent developments and translational challenges for heart valve tissue engineering. J Tissue Eng Regen Med 12:e323–e335

    Article  CAS  PubMed  Google Scholar 

  • Fioretta ES, Von Boehmer L, Motta SE, Lintas V, Hoerstrup SP, Emmert MY (2019) Cardiovascular tissue engineering: From basic science to clinical application. Exp Gerontol 117:1–12

    Article  CAS  PubMed  Google Scholar 

  • Fioretta ES, Motta SE, Lintas V, Loerakker S, Parker KK, Baaijens FP, Falk V, Hoerstrup SP, Emmert MY (2021) Next-generation tissue-engineered heart valves with repair, remodelling and regeneration capacity. Nat Rev Cardiol 18:92–116

    Article  PubMed  Google Scholar 

  • Foth R, Shomroni O, Sigler M, Hörer J, Cleuziou J, Paul T, Eildermann K (2021) Screening for potential targets to reduce stenosis in bioprosthetic heart valves. Sci Rep 11:1–8

    Article  CAS  Google Scholar 

  • Gahruie HH, Niakousari M (2017) Antioxidant, antimicrobial, cell viability and enzymatic inhibitory of antioxidant polymers as biological macromolecules. Int J Biol Macromol 104:606–617

    Article  CAS  Google Scholar 

  • Gallyamov MO, Chaschin IS, Khokhlova MA, Grigorev TE, Bakuleva NP, Lyutova IG, Kondratenko JE, Badun GA, Chernysheva MG, Khokhlov AR (2014) Collagen tissue treated with chitosan solutions in carbonic acid for improved biological prosthetic heart valves. Mater Sci Eng C 37:127–140

    Article  CAS  Google Scholar 

  • Gondrie MJ, van der Graaf Y, Jacobs PC, Oen AL, Willem PTM (2011) The association of incidentally detected heart valve calcification with future cardiovascular events. Eur Radiol 21:963–973

    Article  PubMed  Google Scholar 

  • Goodwin RL, Biechler SV (2019) Clinical anatomy and embryology of heart valves. In: Principles of Heart Valve Engineering. Elsevier, pp 1–12

  • Habibizadeh M, Nadri S, Fattahi A, Rostamizadeh K, Mohammadi P, Andalib S, Hamidi M, Forouzideh N (2021) Surface modification of neurotrophin-3 loaded PCL/chitosan nanofiber/net by alginate hydrogel microlayer for enhanced biocompatibility in neural tissue engineering. J Biomed Mater Res A. https://doi.org/10.1002/jbm.a.37208

    Article  PubMed  Google Scholar 

  • Hahn SK, Ohri R, Giachelli CM (2005) Anti-calcification of bovine pericardium for bioprosthetic heart valves after surface modification with hyaluronic acid derivatives. Biotechnol Bioprocess Eng 10:218

    Article  CAS  Google Scholar 

  • Hasan A, Saliba J, Modarres HP, Bakhaty A, Nasajpour A, Mofrad MR, Sanati-Nezhad A (2016) Micro and nanotechnologies in heart valve tissue engineering. Biomaterials 103:278–292

    Article  CAS  PubMed  Google Scholar 

  • Haynes E, Mitchell A, Enkel S, Wyber R, Bessarab D (2020) Voices behind the statistics: a systematic literature review of the lived experience of rheumatic heart disease. Int J Env Res Public Health 17:1347

    Article  Google Scholar 

  • Hernández-González AC, Téllez-Jurado L, Rodríguez-Lorenzo LM (2020) Alginate hydrogels for bone tissue engineering, from injectables to bioprinting: a review. Carbohydr Polym 229:115514

    Article  PubMed  CAS  Google Scholar 

  • Hickey RJ, Pelling AE (2019) Cellulose biomaterials for tissue engineering. Front Bioeng Biotech 7:45

    Article  Google Scholar 

  • Hofferberth SC, Saeed MY, Tomholt L, Fernandes MC, Payne CJ, Price K, Marx GR, Esch JJ, Brown DW, Brown J (2020) A geometrically adaptable heart valve replacement. Sci Transl Med. https://doi.org/10.1126/scitranslmed.aay4006

    Article  PubMed  PubMed Central  Google Scholar 

  • Hong H, Dong N, Shi J, Chen S, Guo C, Hu P, Qi H (2009) Fabrication of a novel hybrid heart valve leaflet for tissue engineering: an in vitro study. Artif Organs 33:554–558

    Article  PubMed  Google Scholar 

  • Hu Y, Su X, Lei Y, Wang Y (2019) A novel anti-calcification method for bioprosthetic heart valves using dopamine-modified alginate. Polym Bull 76:1423–1434

    Article  CAS  Google Scholar 

  • Islam MM, Shahruzzaman M, Biswas S, Sakib MN, Rashid TU (2020) Chitosan based bioactive materials in tissue engineering applications-A review. Bioact Mater 5:164–183

    Article  PubMed  PubMed Central  Google Scholar 

  • Jana S, Tranquillo RT, Lerman A (2016) Cells for tissue engineering of cardiac valves. J Tissue Eng Regen Med 10:804–824

    Article  CAS  PubMed  Google Scholar 

  • Jana S, Bhagia A, Lerman A (2019) Optimization of polycaprolactone fibrous scaffold for heart valve tissue engineering. Biomed Mater 14:065014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jover E, Fagnano M, Angelini G, Madeddu P (2018) Cell sources for tissue engineering strategies to treat calcific valve disease. Front Cardiovasc Med 5:155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kanczler J, Wells J, Gibbs D, Marshall K, Tang D, Oreffo RO (2020) Bone tissue engineering and bone regeneration. Prin Tissue Eng. https://doi.org/10.1016/B978-0-12-818422-6.00052-6

    Article  Google Scholar 

  • Kang LH, Armstrong PA, Lee LJ, Duan B, Kang KH, Butcher JT (2017) Optimizing photo-encapsulation viability of heart valve cell types in 3D printable composite hydrogels. Ann Biomed Eng 45:360–377

    Article  PubMed  Google Scholar 

  • Kirschning A, Dibbert N, Dräger G (2018) Chemical functionalization of polysaccharides–Towards biocompatible hydrogels for biomedical applications. Chem A Eur J 24:1231–1240

    Article  CAS  Google Scholar 

  • Kobayashi T, Chanmee T, Itano N (2020) Hyaluronan: Metabolism and function. Biomolecules 10:1525

    Article  CAS  PubMed Central  Google Scholar 

  • Kumar A, Rao KM, Han SS (2018) Application of xanthan gum as polysaccharide in tissue engineering: a review. Carbohydr Polym 180:128–144

    Article  CAS  PubMed  Google Scholar 

  • Lei Y, Deng L, Tang Y, Ning Q, Lan X, Wang Y (2019) Hybrid pericardium with VEGF-loaded hyaluronic acid hydrogel coating to improve the biological properties of bioprosthetic heart valves. Macromol Biosci 19:1800390

    Article  CAS  Google Scholar 

  • Li H, Hu C, Yu H, Chen C (2018) Chitosan composite scaffolds for articular cartilage defect repair: a review. RSC Adv 8:3736–3749

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liberski A, Ayad N, Wojciechowska D, Kot R, Vo DM, Aibibu D, Hoffmann G, Cherif C, Grobelny-Mayer K, Snycerski M (2017) Weaving for heart valve tissue engineering. Biotechnol Adv 35:633–656

    Article  CAS  PubMed  Google Scholar 

  • Lisy M, Kalender G, Schenke-Layland K, Brockbank KG, Biermann A, Stock UA (2017) Allograft heart valves: current aspects and future applications. Biopreservation and Biobanking 15:148–157

    Article  CAS  PubMed  Google Scholar 

  • Madrid APM, Vrech SM, Sanchez MA, Rodriguez AP (2019) Advances in additive manufacturing for bone tissue engineering scaffolds. Mater Sci Eng C 100:631–644

    Article  CAS  Google Scholar 

  • Madub K, Goonoo N, Gimié F, Arsa IA, Schönherr H, Bhaw-Luximon A (2021) Green seaweeds ulvan-cellulose scaffolds enhance in vitro cell growth and in vivo angiogenesis for skin tissue engineering. Carbohydr Polym 251:117025

    Article  CAS  PubMed  Google Scholar 

  • Marei I, Chester A, Carubelli I, Prodromakis T, Trantidou T, Yacoub MH (2015) Assessment of parylene C thin films for heart valve tissue engineering. Tissue Eng Part A 21:2504–2514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marinho E Jr, Carbonari RC, Malmonge SM, Leão CR (2019) Mechanical behavior of bovine pericardium treated with hyaluronic acid derivative for bioprosthetic aortic valves. J Biomed Mater Res B Appl Biomater 107:2273–2280

    Article  CAS  PubMed  Google Scholar 

  • McCarthy RR, Ullah MW, Booth P, Pei E, Yang G (2019) The use of bacterial polysaccharides in bioprinting. Biotechnol Adv 37:107448

    Article  CAS  PubMed  Google Scholar 

  • Millon L, Wan W (2006) The polyvinyl alcohol–bacterial cellulose system as a new nanocomposite for biomedical applications. J Biomed Mater Res Part B: Appl Biomater: an off J Soci Biomater, Japanese Soci Biomater, Australian Soci Biomater Korean Soci Biomater 79:245–253

    CAS  Google Scholar 

  • Millon LE, Guhados G, Wan W (2008) Anisotropic polyvinyl alcohol—Bacterial cellulose nanocomposite for biomedical applications. J Biomed Mater Res Part B: Appl Biomater: an off J Society for Biomater, Japanese Soci Biomater, Austral Soci Biomater Korean Soci Biomater 86:444–452

    Google Scholar 

  • Mirani B, Nejad SP, Simmons CA (2021) Recent progress toward clinical translation of tissue engineered heart valves. Can J Cardiol. https://doi.org/10.1016/j.cjca.2021.03.022

    Article  PubMed  Google Scholar 

  • Mohammadi H, Boughner D, Millon L, Wan W (2009) Design and simulation of a poly (vinyl alcohol)—bacterial cellulose nanocomposite mechanical aortic heart valve prosthesis. Proc Inst Mech Eng [h] 223:697–711

    Article  CAS  Google Scholar 

  • Mol A, Smits AI, Bouten CV, Baaijens FP (2009) Tissue engineering of heart valves: advances and current challenges. Expert Rev Med Devices 6:259–275

    Article  CAS  PubMed  Google Scholar 

  • Montalbano G, Toumpaniari S, Popov A, Duan P, Chen J, Dalgarno K, Scott W III, Ferreira A (2018) Synthesis of bioinspired collagen/alginate/fibrin based hydrogels for soft tissue engineering. Mater Sci Eng C 91:236–246

    Article  CAS  Google Scholar 

  • Murizan NIS, Mustafa NS, Ngadiman NHA, Mohd Yusof N, Idris A (2020) Review on nanocrystalline cellulose in bone tissue engineering applications. Polymers 12:2818

    Article  CAS  PubMed Central  Google Scholar 

  • Naomi R, Bt Hj Idrus R, Fauzi MB (2020) Plant-vs Bacterial-derived cellulose for wound healing: a review. Int J Env Res Public Health 17(18):6803

    Article  CAS  Google Scholar 

  • Nayak AK, Ahmed SA, Tabish M, Hasnain MS (2019) Natural polysaccharides in tissue engineering applications. Natural polysaccharides in drug delivery and biomedical applications. Elsevier, Armsterdam, pp 531–548

    Chapter  Google Scholar 

  • Nazir R, Bruyneel A, Carr C, Czernuszka J (2019) Collagen type I and hyaluronic acid based hybrid scaffolds for heart valve tissue engineering. Biopolymers 110:e23278

    Article  PubMed  CAS  Google Scholar 

  • Niu X, Wei Y, Liu Q, Yang B, Ma N, Li Z, Zhao L, Chen W, Huang D (2020) Silver-loaded microspheres reinforced chitosan scaffolds for skin tissue engineering. Eur Polym J 134:109861

    Article  CAS  Google Scholar 

  • Novotna K, Havelka P, Sopuch T, Kolarova K, Vosmanska V, Lisa V, Svorcik V, Bacakova L (2013) Cellulose-based materials as scaffolds for tissue engineering. Cellulose 20:2263–2278

    Article  CAS  Google Scholar 

  • Oh SL, Jahmunah V, Ooi CP, Tan R-S, Ciaccio EJ, Yamakawa T, Tanabe M, Kobayashi M, Acharya UR (2020) Classification of heart sound signals using a novel deep WaveNet model. Comput Methods Programs Biomed 196:105604

    Article  PubMed  Google Scholar 

  • Pang M, Huang Y, Meng F, Zhuang Y, Liu H, Du M, Ma Q, Wang Q, Chen Z, Chen L (2020) Application of bacterial cellulose in skin and bone tissue engineering. Eur Polym J 122:109365

    Article  CAS  Google Scholar 

  • Pereira H, Sousa DA, Cunha A, Andrade R, Espregueira-Mendes J, Oliveira JM, Reis RL (2018) Hyaluronic acid. Osteoch Tiss Eng. https://doi.org/10.1007/978-3-319-76735-2_6

    Article  Google Scholar 

  • Prakash J, Prema D, Venkataprasanna K, Balagangadharan K, Selvamurugan N, Venkatasubbu GD (2020) Nanocomposite chitosan film containing graphene oxide/hydroxyapatite/gold for bone tissue engineering. Int J Biol Macromol 154:62–71

    Article  CAS  PubMed  Google Scholar 

  • Qi X, Wei W, Shen J, Dong W (2019) Salecan polysaccharide-based hydrogels and their applications: a review. J Mater Chem B 7:2577–2587

    Article  CAS  PubMed  Google Scholar 

  • Rastogi P, Kandasubramanian B (2019) Review of alginate-based hydrogel bioprinting for application in tissue engineering. Biofabrication 11:042001

    Article  CAS  PubMed  Google Scholar 

  • Ravishankar P, Ozkizilcik A, Husain A, Balachandran K (2021) Anisotropic fiber-reinforced glycosaminoglycan hydrogels for heart valve tissue engineering. Tissue Eng Part A 27:513–525

    Article  CAS  PubMed  Google Scholar 

  • Reakasame S, Boccaccini AR (2018) Oxidized alginate-based hydrogels for tissue engineering applications: a review. Biomacromol 19:3–21

    Article  CAS  Google Scholar 

  • Ren Y, Zhang H, Qin W, Du B, Liu L, Yang J (2020) A collagen mimetic peptide-modified hyaluronic acid hydrogel system with enzymatically mediated degradation for mesenchymal stem cell differentiation. Mater Sci Eng C 108:110276

    Article  CAS  Google Scholar 

  • Roderjan JG, de Noronha L, Stimamiglio MA, Correa A, Leitolis A, Bueno RRL, da Costa FDA (2019) Structural assessments in decellularized extracellular matrix of porcine semilunar heart valves: Evaluation of cell niches. Xenotransplantation 26:e12503

    Article  PubMed  Google Scholar 

  • Rodriguez KJ, Piechura LM, Masters KS (2011) Regulation of valvular interstitial cell phenotype and function by hyaluronic acid in 2-D and 3-D culture environments. Matrix Biol 30:70–82

    Article  CAS  PubMed  Google Scholar 

  • Sadeghianmaryan A, Naghieh S, Sardroud HA, Yazdanpanah Z, Soltani YA, Sernaglia J, Chen X (2020) Extrusion-based printing of chitosan scaffolds and their in vitro characterization for cartilage tissue engineering. Int J Biol Macromol 164:3179–3192

    Article  CAS  PubMed  Google Scholar 

  • Sahoo DR, Biswal T (2021) Alginate and its application to tissue engineering. SN Applied Sciences 3:1–19

    Article  CAS  Google Scholar 

  • Sarathy S (2016) Development of cylindrical bacterial cellulose membranes for pulmonary heart valve prostheses. The University of Iowa

  • Scarritt ME, Pashos NC, Bunnell BA (2015) A review of cellularization strategies for tissue engineering of whole organs. Front Bioeng Biotechnol 3:43

    Article  PubMed  PubMed Central  Google Scholar 

  • Sewell-Loftin MK, DeLaughter DM, Peacock JR, Brown CB, Baldwin HS, Barnett JV, Merryman WD (2014) Myocardial contraction and hyaluronic acid mechanotransduction in epithelial-to-mesenchymal transformation of endocardial cells. Biomaterials 35:2809–2815

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shanthi C, Panduranga Rao K (1997) New treatments using alginate in order to reduce the calcification of bovine bioprosthetic heart valve tissue. J Biomater Sci Polym Ed 8:919–930

    Article  CAS  PubMed  Google Scholar 

  • Shanthi C, Rao KP (2001) Chitosan modified poly (glycidyl methacrylate–butyl acrylate) copolymer grafted bovine pericardial tissue—anticalcification properties. Carbohydr Polym 44:123–131

    Article  CAS  Google Scholar 

  • Sharmila G, Muthukumaran C, Kirthika S, Keerthana S, Kumar NM, Jeyanthi J (2020) Fabrication and characterization of Spinacia oleracea extract incorporated alginate/carboxymethyl cellulose microporous scaffold for bone tissue engineering. Int J Biol Macromol 156:430–437

    Article  CAS  PubMed  Google Scholar 

  • Singh PK, Pattnaik R, Kumar S, Ojha SK, Srichandan H, Parhi PK, Jyothi RK (2022) Biochemistry synthesis and applications of bacterial cellulose: a review. Front Bioeng Biotechnol. https://doi.org/10.3389/fbioe.2022.780409

    Article  PubMed  PubMed Central  Google Scholar 

  • Sohail R, Abbas SR (2020) Evaluation of amygdalin-loaded alginate-chitosan nanoparticles as biocompatible drug delivery carriers for anticancerous efficacy. Int J Biol Macromol 153:36–45

    Article  CAS  PubMed  Google Scholar 

  • Soundarya SP, Menon AH, Chandran SV, Selvamurugan N (2018) Bone tissue engineering: Scaffold preparation using chitosan and other biomaterials with different design and fabrication techniques. Int J Biol Macromol 119:1228–1239

    Article  CAS  Google Scholar 

  • Sze JH, Brownlie JC, Love CA (2016) Biotechnological production of hyaluronic acid: a mini review. 3 Biotech. https://doi.org/10.1007/s13205-016-0379-9

    Article  PubMed  PubMed Central  Google Scholar 

  • Tchobanian A, Van Oosterwyck H, Fardim P (2019) Polysaccharides for tissue engineering: Current landscape and future prospects. Carbohydr Polym 205:601–625

    Article  CAS  PubMed  Google Scholar 

  • Tiwari S, Patil R, Bahadur P (2019) Polysaccharide based scaffolds for soft tissue engineering applications. Polymers 11:1

    Article  CAS  Google Scholar 

  • Tod TJ, Gohres RA, Torky M, Wright GA, Lamberigts M, Flameng W, Meuris B (2021) Influence of tissue technology on pannus formation on bioprosthetic heart valves. Cardiovasc Eng Technol 12(4):418–425

    Article  PubMed  Google Scholar 

  • Torgbo S, Sukyai P (2018) Bacterial cellulose-based scaffold materials for bone tissue engineering. Appl Mater Today 11:34–49

    Article  Google Scholar 

  • Tseng H, Puperi DS, Kim EJ, Ayoub S, Shah JV, Cuchiara ML, West JL, Grande-Allen KJ (2014) Anisotropic poly (ethylene glycol)/polycaprolactone hydrogel–fiber composites for heart valve tissue engineering. Tissue Eng Part A 20:2634–2645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tuncay V, van Ooijen PM (2019) 3D printing for heart valve disease: a systematic review. Eur Radiol Exp 3:1–10

    Article  Google Scholar 

  • Uiterwijk M, van der Valk D, van Vliet R, de Brouwer I, Hooijmans C, Kluin J (2021) Pulmonary valve tissue engineering strategies in large animal models. PLoS ONE 16:e0258046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Van der Valk DC, Van der Ven CF, Blaser MC, Grolman JM, Wu P-J, Fenton OS, Lee LH, Tibbitt MW, Andresen JL, Wen JR (2018) Engineering a 3D-bioprinted model of human heart valve disease using nanoindentation-based biomechanics. Nanomaterials 8:296

    Article  PubMed Central  CAS  Google Scholar 

  • VeDepo MC, Buse EE, Paul A, Converse GL, Hopkins RA (2019) Non-physiologic bioreactor processing conditions for heart valve tissue engineering. Cardiovasc Eng Technol 10:628–637

    Article  PubMed  Google Scholar 

  • Venkatesan J, Nithya R, Sudha PN, Kim S-K (2014) Role of alginate in bone tissue engineering. Adv Food Nutr Res 73:45–57

    Article  CAS  PubMed  Google Scholar 

  • Walimbe T, Panitch A, Sivasankar PM (2017) A review of hyaluronic acid and hyaluronic acid-based hydrogels for vocal fold tissue engineering. J Voice 31:416–423

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang X, Ali MS, Lacerda CM (2018) A three-dimensional collagen-elastin scaffold for heart valve tissue engineering. Bioengineering 5:69

    Article  PubMed Central  CAS  Google Scholar 

  • Williams DF (2019) Challenges with the development of biomaterials for sustainable tissue engineering. Front Bioeng Biotechnol 7:127

    Article  PubMed  PubMed Central  Google Scholar 

  • Wong C, Shital P, Chen R, Owida A, Morsi Y (2010) Biomimetic electrospun gelatin–chitosan polyurethane for heart valve leaflets. J Mech Med Biol 10:563–576

    Article  Google Scholar 

  • Wong SC, Yeo I, Bergman G, Feldman DN, Singh H, Minutello R, Kim LK (2019) The influence of gender on in-hospital clinical outcome following isolated mitral or aortic heart valve surgery. Cardiovasc Revasc Med 20:468–474

    Article  PubMed  Google Scholar 

  • Yadav LR, Chandran SV, Lavanya K, Selvamurugan N (2021) Chitosan-based 3D-printed scaffolds for bone tissue engineering. Int J Biol Macromol 183:1925–1938

    Article  CAS  PubMed  Google Scholar 

  • Zarei M, Samimi A, Khorram M, Abdi MM, Golestaneh SI (2021) Fabrication and characterization of conductive polypyrrole/chitosan/collagen electrospun nanofiber scaffold for tissue engineering application. Int J Biol Macromol 168:175–186

    Article  CAS  PubMed  Google Scholar 

  • Zarif M-E (2018) A review of chitosan-, alginate-, and gelatin-based biocomposites for bone tissue engineering. Biomater Tissue Eng Bull 5:97–109

    Article  Google Scholar 

  • Zha F, Chen W, Hao L, Wu C, Lu M, Zhang L, Yu D (2020) Electrospun cellulose-based conductive polymer nanofibrous mats: composite scaffolds and their influence on cell behavior with electrical stimulation for nerve tissue engineering. Soft Matter 16:6591–6598

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Xu B, Puperi DS, Wu Y, West JL, Grande-Allen KJ (2015a) Application of hydrogels in heart valve tissue engineering. J Long Term Effect Med Impl 25(1–2):105–134

    Article  Google Scholar 

  • Zhang X, Xu B, Puperi DS, Yonezawa AL, Wu Y, Tseng H, Cuchiara ML, West JL, Grande-Allen KJ (2015b) Integrating valve-inspired design features into poly (ethylene glycol) hydrogel scaffolds for heart valve tissue engineering. Acta Biomater 14:11–21

    Article  PubMed  CAS  Google Scholar 

  • Zhang R, Xie L, Wu H, Yang T, Zhang Q, Tian Y, Liu Y, Han X, Guo W, He M (2020) Alginate/laponite hydrogel microspheres co-encapsulating dental pulp stem cells and VEGF for endodontic regeneration. Acta Biomater 113:305–316

    Article  CAS  PubMed  Google Scholar 

  • Zhu AS, Grande-Allen KJ (2018) Heart valve tissue engineering for valve replacement and disease modeling. Current Opin Biomed Eng 5:35–41

    Article  Google Scholar 

  • Zhu Z, Wang Y-M, Yang J, Luo X-S (2017) Hyaluronic acid: a versatile biomaterial in tissue engineering. Plast Aesthet Res 4:219–227

    Article  Google Scholar 

  • Zhu T, Mao J, Cheng Y, Liu H, Lv L, Ge M, Li S, Huang J, Chen Z, Li H (2019) Recent progress of polysaccharide-based hydrogel interfaces for wound healing and tissue engineering. Adv Mater Interf 6:1900761

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors extend their appreciation to the Deputyship for Research & Innovation, Ministry of Education in Saudi Arabia for funding this research work through the project number (IF-PSAU-2021/03/18840).

Funding

This study was supported by Deputyship for Research & Innovation, Ministry of Education in Saudi Arabia through the Project No. (IF-PSAU-2021/03/18840).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Data collection, resources and analysis were performed by SMA, AMO, AAI, GSS and AMA. The first draft of the manuscript was written by WKA, AMO and SMA. And all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Walid Kamal Abdelbasset.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdelbasset, W.K., Alrawaili, S.M., Osailan, A.M. et al. Polysaccharides, as biological macromolecule-based scaffolding systems in heart valve tissue engineering: a review. Cellulose 29, 5395–5428 (2022). https://doi.org/10.1007/s10570-022-04588-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-022-04588-5

Keywords

Navigation