Skip to main content
Log in

Highly flame retardant, low thermally conducting, and hydrophobic phytic acid-guanazole-cellulose nanofiber composite foams

  • Original Research
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Cellulose as a bio-based material has attracted increasing attention due to its excellent properties. However, cellulose is very flammable and it is necessary to impart flame retardancy to cellulose nanofiber (CNF) foams. In this work, phytic acid (PA)-guanazole (GZ)-CNF composite foams were prepared by a simple freeze-drying method. SEM images indicated that the resultant PA-GZ-CNF composite foams exhibited a hierarchical porous structure. Moreover, the introduction of PA and GZ slightly affected the thermal conducting property of CNF foams. PA-GZ-CNF composite foams possessed excellent flame retardancy with a much higher LOI value and a UL-94 V-0 rating compared to that of pure CNF foams. Moreover, the peak of the heat release rate of PA-GZ-CNF composite foams exhibited a significant decrease from 57.80 to 29.27 kW/m2 and the total heat release declined from 2.10 to 1.21 MJ/m2. PA-GZ-CNF composite foams formed a protective char layer covered on the surface, which produced less thermal decomposition volatiles and prevented the spread of pyrolysis products into the gas phase. Additionally, PA-GZ-CNF composite foams achieved hydrophobicity with a water contact angle of 104.0° after hydrophobic treatment without sacrificing their flame retardancy.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Bauer KN, Tee HT, Velencoso MM, Wurm FR (2017) Main-chain poly(phosphoester)s: history, syntheses, degradation, bio-and flame-retardant applications. Prog Polym Sci 73:61–122

    Article  CAS  Google Scholar 

  • Bourbigot S, Bras M, Delobel R, Gengembre L (1997) XPS study of an intumescent coating: Ii. application to the ammonium polyphosphate/pentaerythritol/ethylenic terpolymer fire retardant system with and without synergistic agent. Appl Surf Sci 120:15–29

    Article  CAS  Google Scholar 

  • Chen L, Wu F, Li Y, Wang Y, Si L, Lee KI et al (2018) Robust and elastic superhydrophobic breathable fibrous membrane with in situ grown hierarchical structures. J Membr Sci 547:93–98

    Article  CAS  Google Scholar 

  • Chen X, Ma Y, Cheng YJ, Zhang A, Liu W, Zhou H (2020) Synergistic effect between a novel silane-containing hyperbranched polyphosphamide and ammonium polyphosphate on the flame retardancy and smoke suppression of polypropylene composites. Polym Degrad Stab 181:109348

    Article  CAS  Google Scholar 

  • Cheng XD, Zhu SY, Pan YL, Deng YR, Shi L, Gong LL (2020) Fire retardancy and thermal behaviors of cellulose nanofiber/zinc borate aerogel. Cellulose 27:7463–7474

    Article  CAS  Google Scholar 

  • Chi Z, Guo Z, Xu Z, Zhang M, Li M, Shang L et al (2020) A DOPO-based phosphorus-nitrogen flame retardant bio-based epoxy resin from diphenolic acid: synthesis, flame-retardant behavior and mechanism. Polym Degrad Stab 176:109151

    Article  CAS  Google Scholar 

  • Dolez PI, Arfaoui MA, Dubé M, David É (2017) Hydrophobic treatments for natural fibers based on metal oxide nanoparticles and fatty acids. Procedia Eng 200:81–88

    Article  CAS  Google Scholar 

  • Du X, Qiu J, Deng S, Du Z, Cheng X, Wang H (2020) Flame-retardant and form-stable phase change composites based on black phosphorus nanosheets/cellulose nanofiber aerogels with extremely high energy storage density and superior solar-thermal conversion efficiency. J Mater Chem A 8:14126–14134

    Article  CAS  Google Scholar 

  • Fang F, Huo S, Shen H, Ran S, Wang H, Song P et al (2020) A bio-based ionic complex with different oxidation states of phosphorus for reducing flammability and smoke release of epoxy resins. Compos Commun 17:104–108

    Article  Google Scholar 

  • Ferreira ES, Cranston ED, Rezende CA (2020) Naturally hydrophobic foams from lignocellulosic fibers prepared by oven-drying. ACS Sustain Chem Eng 8:8267–8278

    Article  CAS  Google Scholar 

  • Gao Y, Wu J, Wang Q, Wilkie CA, O’Hare D (2014) Flame retardant polymer/layered double hydroxide nanocomposites. J Mater Chem A 2:10996–11016

    Article  CAS  Google Scholar 

  • Guo WW, Wang X, Zhang P, Liu JJ, Song L, Hu Y (2018) Nano-fibrillated cellulose-hydroxyapatite based composite foams with excellent fire resistance. Carbohyd Polym 195:71–78

    Article  CAS  Google Scholar 

  • Guo WW, Wang X, Gangireddy CSR, Wang JL, Pan Y, Xing WY et al (2019) Cardanol derived benzoxazine in combination with boron-doped graphene toward simultaneously improved toughening and flame retardant epoxy composites. Compos Part a Appl S 116:13–23

    Article  CAS  Google Scholar 

  • Habibi Y, Lucia LA, Rojas OJ (2010) Cellulose nanocrystals: chemistry, self-assembly, and applications. Chem Rev 110:3479–3500

    Article  CAS  PubMed  Google Scholar 

  • Han Y, Zhang X, Wu X, Lu C (2015) Flame retardant, heat insulating cellulose aerogels from waste cotton fabrics by in situ formation of magnesium hydroxide nanoparticles in cellulose gel nanostructures. ACS Sustain Chem Eng 3:1853–1859

    Article  CAS  Google Scholar 

  • Hou Y, Liu L, Qiu S, Zhou X, Gui Z, Hu Y (2018) DOPO-modified two-dimensional co-based metal-organic framework: Preparation and application for enhancing fire safety of poly(lactic acid). ACS Appl Mater Interfaces 10:8274–8286

    Article  CAS  PubMed  Google Scholar 

  • Hu Q, Li G, Liu X, Zhu B, Chai X, Zhang Q et al (2019a) Superhydrophilic phytic-acid-doped conductive hydrogels as metal-free and binder-free electrocatalysts for efficient water oxidation. Angew Chem Int Ed 58:4318–4322

    Article  CAS  Google Scholar 

  • Hu W, Lu L, Li Z, Shao L (2019b) A facile slow-gel method for bulk al-doped carboxymethyl cellulose aerogels with excellent flame retardancy. Carbohyd Polym 207:352–361

    Article  CAS  Google Scholar 

  • Huang JL, Guo WW, Wang X, Song L, Hu Y (2021) Intrinsically flame retardant cardanol-based epoxy monomer for high-performance thermosets. Polym Degrad Stab 186:109519

    Article  CAS  Google Scholar 

  • Ji S, Duan H, Chen Y, Guo D, Ma H (2020) A novel phosphorus/nitrogen-containing liquid acrylate monomer endowing vinyl ester resin with excellent flame retardancy and smoke suppression. Polymer 207:122917

    Article  CAS  Google Scholar 

  • Jiang F, Li T, Li Y, Zhang Y, Gong A, Dai J et al (2018) Wood-based nanotechnologies toward sustainability. Adv Mater 30:1703453

    Article  CAS  Google Scholar 

  • Kwong CH, Ng SP, Kan CW, Molina R (2014) Inducing hydrophobic surface on polyurethane synthetic leather by atmospheric pressure plasma. Fiber Polym 15:1596–1600

    Article  CAS  Google Scholar 

  • Li S, Dai J (2007) Improvement of hydrophobic properties of silk and cotton by hexafluoropropene plasma treatment. Appl Surf Sci 253:5051–5055

    Article  CAS  Google Scholar 

  • Li C, Wan J, Kalali EN, Fan H, Wang DY (2015) Synthesis and characterization of functional eugenol derivative based layered double hydroxide and its use as a nanoflame-retardant in epoxy resin. J Mater Chem A 3:3471–3479

    Article  CAS  Google Scholar 

  • Liao SH, Liu PL, Hsiao MC, Teng CC, Wang CA, Ger MD et al (2012) One-step reduction and functionalization of graphene oxide with phosphorus-based compound to produce flame-retardant epoxy nanocomposite. Ind Eng Chem Res 51:4573–4581

    Article  CAS  Google Scholar 

  • Liu L, Qian M, Song P, Huang G, Yu Y, Fu S (2016) Fabrication of green lignin-based flame retardants for enhancing the thermal and fire retardancy properties of polypropylene/wood composites. ACS Sustain Chem Eng 4:2422–2431

    Article  CAS  Google Scholar 

  • Long LY, Weng YX, Wang YZ (2018) Cellulose aerogels: synthesis, applications, and prospects. Polymers 10:623

    Article  PubMed Central  CAS  Google Scholar 

  • Luo XL, Shen JY, Ma YN, Liu L, Meng RJ, Yao JM (2020) Robust, sustainable cellulose composite aerogels with outstanding flame retardancy and thermal insulation. Carbohyd Polym 230:115623

    Article  CAS  Google Scholar 

  • Mamleev V, Bourbigot S, Yvon J (2007) Kinetic analysis of the thermal decomposition of cellulose: the main step of mass loss. J Anal Appl Pyrolysis 80:151–165

    Article  CAS  Google Scholar 

  • Medina L, Carosio F, Berglund LA (2019) Recyclable nanocomposite foams of poly(vinyl alcohol), clay and cellulose nanofibrils – mechanical properties and flame retardancy. Compos Sci Technol 182:107762

    Article  CAS  Google Scholar 

  • Niu F, Wu N, Yu J, Ma X (2020) Gelation, flame retardancy, and physical properties of phosphorylated microcrystalline cellulose aerogels. Carbohyd Polym 242:116422

    Article  CAS  Google Scholar 

  • Pan H, Qian X, Ma L, Song L, Hu Y, Liew KM (2014) Preparation of a novel biobased flame retardant containing phosphorus and nitrogen and its performance on the flame retardancy and thermal stability of poly(vinyl alcohol). Polym Degrad Stab 106:47–53

    Article  CAS  Google Scholar 

  • Shi Y, Yu B, Zheng Y, Guo J, Chen B, Pan Z et al (2018a) A combination of poss and polyphosphazene for reducing fire hazards of epoxy resin. Polym Adv Technol 29:1242–1254

    Article  CAS  Google Scholar 

  • Shi Y, Yu B, Zheng Y, Yang J, Duan Z, Hu Y (2018b) Design of reduced graphene oxide decorated with DOPO-phosphanomidate for enhanced fire safety of epoxy resin. J Colloid Interface Sci 521:160–171

    Article  CAS  PubMed  Google Scholar 

  • Shi Y, Liu C, Duan Z, Yu B, Liu M, Song P (2020) Interface engineering of mxene towards super-tough and strong polymer nanocomposites with high ductility and excellent fire safety. Chem Eng J 399:125829

    Article  CAS  Google Scholar 

  • Siy BSC, Tan JAXC, Viron KP, Sajor NJB, Santos GNC, Penaloza DP Jr (2020) Application of silane coupling agents to abaca fibers for hydrophobic modification. Cell Chem Technol 54:365–369

    Article  CAS  Google Scholar 

  • Suflet DM, Chitanu GC, Popa VI (2006) Phosphorylation of polysaccharides: new results on synthesis and characterisation of phosphorylated cellulose. React Funct Polym 66:1240–1249

    Article  CAS  Google Scholar 

  • Wang L, Sanchez-Soto M (2015) Green bio-based aerogels prepared from recycled cellulose fiber suspensions. RSC Adv 5:31384–31391

    Article  CAS  Google Scholar 

  • Wang X, Zhou S, Xing W, Yu B, Feng X, Song L et al (2013) Self-assembly of Ni–Fe layered double hydroxide/graphene hybrids for reducing fire hazard in epoxy composites. J Mater Chem A 1:4383–4390

    Article  CAS  Google Scholar 

  • Wang J, Zhang D, Zhang Y, Cai W, Yao C, Hu Y et al (2019) Construction of multifunctional boron nitride nanosheet towards reducing toxic volatiles (co and hcn) generation and fire hazard of thermoplastic polyurethane. J Hazard Mater 362:482–494

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Zhang X, Cao J, Huang X, Zhang X (2021) Multifunctional e-textiles based on biological phytic acid-doped polyaniline/protein fabric nanocomposites. Adv Mater Technol 6:2100003

    Article  Google Scholar 

  • Wen Y, Cheng Z, Li W, Li Z, Liao D, Hu X et al (2018) A novel oligomer containing dopo and ferrocene groups: synthesis, characterization, and its application in fire retardant epoxy resin. Polym Degrad Stab 156:111–124

    Article  CAS  Google Scholar 

  • Xu W, Wang S, Li A, Wang X (2016) Synthesis of aminopropyltriethoxysilane grafted/tripolyphosphate intercalated znal ldhs and their performance in the flame retardancy and smoke suppression of polyurethane elastomer. RSC Adv 6:48189–48198

    Article  CAS  Google Scholar 

  • Xu Z, Xing W, Hou Y, Zou B, Han L, Hu W et al (2021) The combustion and pyrolysis process of flame-retardant polystyrene/cobalt-based metal organic frameworks (MOF) nanocomposite. Combust Flame 226:108–116

    Article  CAS  Google Scholar 

  • Yang Z, Wang X, Lei D, Fei B, Xin JH (2012) A durable flame retardant for cellulosic fabrics. Polym Degrad Stab 97:2467–2472

    Article  CAS  Google Scholar 

  • Yuan B, Zhang JM, Mi QY, Yu J, Song R, Zhang J (2017) Transparent cellulose-silica composite aerogels with excellent flame retardancy via an in situ sol-gel process. ACS Sustain Chem Eng 5:11117–11123

    Article  CAS  Google Scholar 

  • Zhang X, Cao J, Yang Y, Wu X, Zheng Z, Zhang X (2019) Flame-retardant, highly sensitive strain sensors enabled by renewable phytic acid-doped biotemplate synthesis and spirally structure design. Chem Eng J 374:730–737

    Article  CAS  Google Scholar 

  • Zou B, Qiu S, Ren X, Zhou Y, Zhou F, Xu Z et al (2020a) Combination of black phosphorus nanosheets and mcnts via phosphoruscarbon bonds for reducing the flammability of air stable epoxy resin nanocomposites. J Hazard Mater 383:121069

    Article  CAS  PubMed  Google Scholar 

  • Zou J, Duan H, Chen Y, Ji S, Cao J, Ma H (2020b) A P/N/S-containing high-efficiency flame retardant endowing epoxy resin with excellent flame retardance, mechanical properties and heat resistance. Compos Part B Eng 199:108228

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Fundamental Research Funds for the Central Universities (Grant No.: WK2320000047), the USTC Research Funds of the Double First-Class Initiative (Grant No.: YD2320002004) and the Youth Innovation Promotion Association of the Chinese Academy of Sciences (Grant No.: 2021459).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin Wang.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose. There are no animal studies or human participants’ involvement in the study. All the authors are consent to the submission of this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, H., Qiu, S., Wang, X. et al. Highly flame retardant, low thermally conducting, and hydrophobic phytic acid-guanazole-cellulose nanofiber composite foams. Cellulose 28, 9769–9783 (2021). https://doi.org/10.1007/s10570-021-04159-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-021-04159-0

Keywords

Navigation