Skip to main content
Log in

Influence of plasma treatment on the dissolution of cellulose in lithium chloride–dimethylacetamide

  • Original Research
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

The development of biodegradable food packaging materials continues to be of significant interest because of its benefits. Among these materials, cellulose-based composites are candidates to replace conventional, petroleum-based food packaging materials. However, incomplete dissolution of cellulose has hindered its large-scale application. Since undissolved cellulose can affect the mechanical properties of the film, full dissolution is preferred. This work explores the use of plasma irradiation as a pretreatment step before the dissolution of cellulose in lithium chloride–N,N-dimethylacetamide (LiCl–DMAc) solvent. Prior to swelling, the cellulose was exposed to subatmospheric oxygen (O\(_2\)) plasma to initiate glycosidic bond cleavage without intense degradation of cellulose. Fourier transform infrared, Raman, and X-ray photoelectron spectral analyses revealed decrystallization and oxidation of the surface after plasma treatment which enhanced the dissolution of cellulose in LiCl–DMAc. Mechanical tests of drop-casted films revealed that plasma-treated cellulose greatly enhanced the mechanical strength of the film compared to that of untreated cellulose whose film was too weak for the tensile test. This work showed that exposure to O\(_2\) plasma as a pretreatment step can improve the dissolution of cellulose via decrystallization and thereby can be coupled with other natural materials as alternative to food packaging materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Acda MN, Devera EE, Cabangon RJ, Ramos HJ (2012) Effects of plasma modification on adhesion properties of wood. Int J Adhes Adhes 32:70–75

    CAS  Google Scholar 

  • Agarwal UP (2017) Raman spectroscopy in the analysis of cellulose nanomaterials. In: Nanocelluloses: their preparation, properties, and applications, ACS symposium series, vol 1251. American Chemical Society, Providence, pp 4–75

  • Agarwal UP, Ralph SA (1997) FT-Raman spectroscopy of wood: identifying contributions of lignin and carbohydrate polymers in the spectrum of black spruce (Picea mariana). Appl Spectrosc 51:1648–1655

    CAS  Google Scholar 

  • Agarwal UP, Reiner RS, Ralph SA (2010) Cellulose I crystallinity determination using FT-Raman spectroscopy: univariate and multivariate methods. Cellulose 17:721–733

    CAS  Google Scholar 

  • Alanis A, Valdés JH, Mará Guadalupe NV, Lopez R, Mendoza R, Mathew AP, Diaz de León R, Valencia L (2019) Plasma surface-modification of cellulose nanocrystals: a green alternative towards mechanical reinforcement of ABS. RSC Adv 9:17417–17424

    CAS  Google Scholar 

  • Avramidis G, Hauswald E, Lyapin A, Militz H, Viol W, Wolkenhauer A (2009) Plasma treatment of wood and wood-based materials to generate hydrophilic or hydrophobic surface characteristics. Wood Mater Sci Eng 4:52–60

    CAS  Google Scholar 

  • Balu B, Breedveld V, Hess DW (2008) Fabrication of “roll-off” and “sticky” superhydrophobic cellulose surfaces via plasma processing. Langmuir 24:4785–4790

    CAS  PubMed  Google Scholar 

  • Bhat N, Netravali A, Gore A, Sathianarayanan M, Arolkar G, Deshmukh R (2011) Surface modification of cotton fabrics using plasma technology. Text Res J 81:1014–1026

    CAS  Google Scholar 

  • Cagomoc CMD, Vasquez MR (2016) Enhanced chromium adsorption capacity via plasma modification of natural zeolites. Jpn J Appl Phys 56:01AF02

    Google Scholar 

  • Cagomoc CMD, Leon MJDD, Ebuen ASM, Gilos MNR, Vasquez MR (2017) RF plasma cleaning of silicon substrates with high-density polyethylene contamination. Jpn J Appl Phys 57(1S):01AB04

    Google Scholar 

  • Calvimontes A, Mauersberger P, Nitschke M, Dutschk V, Simon F (2011) Effects of oxygen plasma on cellulose surface. Cellulose 18:803–809

    CAS  Google Scholar 

  • Chu P, Chen J, Wang L, Huang N (2002) Plasma-surface modification of biomaterials. Mater Sci Eng R Rep 36:143–206

    Google Scholar 

  • Dam S, Thakur A, Das D, Amarendra G, Hussain S (2018) Temperature dependent Raman studies of free standing thin films of cellulose. Mater Res Exp 5:126401

    Google Scholar 

  • Denes F, Young RA (1998) Surface modification of polysaccharides under cold plasma conditions. In: Dumitriu S (ed) Polysaccharides: structural diversity and functional versatility. Marcel Dekker, Inc., New York, pp 1087–1136

    Google Scholar 

  • Dupont AL (2003) Cellulose in lithium chloride/N,N-dimethylacetamide, optimisation of a dissolution method using paper substrates and stability of the solutions. Polymer 44:4117–4126

    CAS  Google Scholar 

  • Fang Q, Cui HW, Du GB (2016) Surface wettability, surface free energy, and surface adhesion of microwave plasma-treated Pinus yunnanensis wood. Wood Sci Technol 50:285–296

    CAS  Google Scholar 

  • Fei P, Liao L, Cheng B, Song J (2017) Quantitative analysis of cellulose acetate with a high degree of substitution by ftir and its application. Analyt Methods 9:6194–6201

    CAS  Google Scholar 

  • Ghasemi M, Alexandridis P, Tsianou M (2017) Cellulose dissolution: insights on the contributions of solvent-induced decrystallization and chain disentanglement. Cellulose 24:571–590

    CAS  Google Scholar 

  • Ghasemi M, Alexandridis P, Tsianou M (2018) Dissolution of cellulosic fibers: impact of crystallinity and fiber diameter. Biomacromolecules 19:640–651

    CAS  PubMed  Google Scholar 

  • Gupta B (2013) 1—Manufacture, types and properties of biotextiles for medical applications. In: King MW, Gupta BS, Guidoin R (eds) Biotextiles as medical implants, Woodhead Publishing series in textiles. Woodhead Publishing, Cambridge, pp 3–47

    Google Scholar 

  • Hidzir NM, Hill DJ, Taran E, Martin D, Grandahl L (2013) Argon plasma treatment-induced grafting of acrylic acid onto expanded poly(tetrafluoroethylene) membranes. Polymer 54:6536–6546

    Google Scholar 

  • Hubilla FAD, Panghulan GR, Pechardo J, Vasquez MR (2017) Mechanical properties of epoxy composites with plasma-modified rice-husk-derived nanosilica. Jpn J Appl Phys 57:01AG07

    Google Scholar 

  • Jiao C, Zhang Z, Tao J, Zhang D, Chen Y, Lin H (2017) Synthesis of a poly(amidoxime-hydroxamic acid) cellulose derivative and its application in heavy metal ion removal. RSC Adv 7:27787–27795

    CAS  Google Scholar 

  • Kang X, Kuga S, Wang L, Wu M, Huang Y (2016) Dissociation of intra/inter-molecular hydrogen bonds of cellulose molecules in the dissolution process: a mini review. J Bioresour Bioprod 1:58–63

    Google Scholar 

  • Kondo T (1997) The assignment of IR absorption bands due to free hydroxyl groups in cellulose. Cellulose 4(4):281

    CAS  Google Scholar 

  • Kuzmina O, Heinze T, Wawro D (2012) Blending of cellulose and chitosan in alkyl imidazolium ionic liquids. ISRN Polym Sci 2012:251950

    Google Scholar 

  • Kan CW (2015) Application of plasma in the pretreatment of textiles. In: A novel green treatment for textiles: plasma treatment as a sustainable technology, chap 5. CRC Press, Boca Raton, pp 101–103

  • Lao TLB, Diaz LJL (2020) Thermoformability of montmorillonite reinforced chitin–cellulose nanocomposite film. Master’s thesis, University of the Philippines, Quezon City, Philippines, unpublished Master’s thesis

  • Lao TL, Pengson LT, Placido J, Diaz LJ (2019) Synthesis of montmorillonite nanoclay reinforced chitin–cellulose nanocomposite film, vol 540

  • Latag GV, Vasquez MR (2018) Effects of RF plasma modification on the thermal and mechanical properties of electrospun chitosan/poly(vinyl alcohol) nanofiber mats. J Vac Sci Technol B 36(4):04I101

    Google Scholar 

  • Lee KR, Song KH (2014) Effect of plasma power on degradation of chitosan. Korean J Chem Eng 31:162–165

    CAS  Google Scholar 

  • Lee KY, Aitomaki Y, Berglund LA, Oksman K, Bismarck A (2014) On the use of nanocellulose as reinforcement in polymer matrix composites. Compos Sci Technol 105:15–27

    Google Scholar 

  • Liebert TF (2010) Cellulose solvents—remarkable history, bright future. In: Liebert TF, Heinze TJ, Edgar KJ (eds) Cellulose solvents: for analysis, shaping and chemical modification, American Chemical Society, pp 3–54

  • Lindman B, Karlström G, Stigsson L (2010) On the mechanism of dissolution of cellulose. J Mol Liq 156:76–81

    CAS  Google Scholar 

  • Medronho B, Lindman B (2015) Brief overview on cellulose dissolution/regeneration interactions and mechanisms. Adv Colloid Interface Sci 222:502–508

    CAS  PubMed  Google Scholar 

  • Montallana ADS, Lai BZ, Chu JP, Vasquez MR (2020) Enhancement of photodegradation efficiency of PVA/TiO\(_2\) nanofiber composites via plasma treatment. Mater Today Commun 24:101183

    CAS  Google Scholar 

  • Morales J, Olayo MG, Cruz GJ, Herrera-Franco P, Olayo R (2006) Plasma modification of cellulose fibers for composite materials. J Appl Polym Sci 101:3821–3828

    CAS  Google Scholar 

  • Oehr C (2003) Plasma surface modification of polymers for biomedical use. Nucl Instrum Methods Phys Res B 208:40–47

    CAS  Google Scholar 

  • Oh SY, Yoo DI, Shin Y, Seo G (2005) FTIR analysis of cellulose treated with sodium hydroxide and carbon dioxide. Carbohydr Res 340:417–428

    CAS  PubMed  Google Scholar 

  • Pabelina KG, Lumban CO, Ramos HJ (2012) Plasma impregnation of wood with fire retardants. Nucl Instrum Methods Phys Res B 272:365–369

    CAS  Google Scholar 

  • Pan M, Zhou X, Chen M (2013) Cellulose nanowhiskers isolation and properties from acid hydrolysis combined with high pressure homogenization. Bioresources 8:933–943

    Google Scholar 

  • Parviainen H, Parviainen A, Virtanen T, Kilpeläinen I, Ahvenainen P, Serimaa R, Grönqvist S, Maloney T, Maunu SL (2014) Dissolution enthalpies of cellulose in ionic liquids. Carbohydr Polym 113:67–76

    CAS  PubMed  Google Scholar 

  • Poblete MRS, Diaz LJL (2014) Synthesis of biodegradable cellulose–chitin polymer blend from Portunus pelagicus. In: Al-Douri Y (ed) Advanced materials research, vol 925. Trans Tech Publications Ltd, Zurich, pp 379–384. https://doi.org/10.4028/www.scientific.net/amr.925.379

    Chapter  Google Scholar 

  • Poletto M, Ornaghi H, Zattera A (2014) Native cellulose: structure, characterization and thermal properties. Materials 7:6105–6119

    PubMed  PubMed Central  Google Scholar 

  • Potthast A, Rosenau T, Buchner R, Röder T, Ebner G, Bruglachner H, Sixta H, Kosma P (2002) The cellulose solvent system N,N-dimethylacetamide/lithium chloride revisited: the effect of water on physicochemical properties and chemical stability. Cellulose 9:41–53

    CAS  Google Scholar 

  • Ramos HJ, Monasterial JLC, Blantocas GQ (2006) Effect of low energy ion beam irradiation on wettability of narra (Pterocarpus indicus) wood chips. Nucl Instrum Methods Phys Res B 242:41–44

    CAS  Google Scholar 

  • Sahin HT (2009) RF-O\(_2\) plasma surface modification of kraft lignin derived from wood pulping. Wood Res 54:103–112

    CAS  Google Scholar 

  • Schuchmann MN, Sonntag C (1978) The effect of oxygen on the OH-radical-induced scission of the glycosidic linkage of cellobiose. Int J Radiat Biol 34:397–400

    CAS  Google Scholar 

  • Shepherd LM, Frey MW (2018) The degradation of cellulose by radio frequency plasma. Fibers 6:61

    CAS  Google Scholar 

  • Swensson B, Larsson A, Hasani M (2020) Dissolution of cellulose using a combination of hydroxide bases in aqueous solution. Cellulose 27:101–112

    Google Scholar 

  • Taaca KLM, Vasquez MR (2018) Hemocompatibility and cytocompatibility of pristine and plasma-treated silver–zeolite–chitosan composites. Appl Surf Sci 432:324–331

    CAS  Google Scholar 

  • Taaca KLM, Nakajima H, Thumanu K, Janphuang P, Chanlek N, Vasquez MR (2020) Spectroscopic studies of plasma-modified silver-exchanged zeolite and chitosan composites. Mater Chem Phys 250:122980

    CAS  Google Scholar 

  • Tumlos R, Ting J, Osorio E, Rosario L, Ramos H, Ulano A, Lee H, Regalado G (2011) Results of the study of chemical-, vacuum drying- and plasma-pretreatment of coconut (Cocos nucifera) lumber sawdust for the adsorption of methyl red in water solution. Surf Coat Technol 205:S425–S429

    CAS  Google Scholar 

  • Valerio JKC, Nakajima H, Vasquez MR (2018) Grafting of acrylic acid onto microwave plasma-treated polytetrafluoroethylene (PTFE) substrates. Jpn J Appl Phys 58:SAAC02

    Google Scholar 

  • Vasquez MR, Prieto EI, Wada M (2018) Radio-frequency plasma-induced biocompatibility of polyimide substrates. Plasma Med 8:35–44

    Google Scholar 

  • Wiley JH, Atalla RH (1987) Band assignments in the Raman spectra of celluloses. Carbohydr Res 160:113–129

    CAS  Google Scholar 

  • Wu J, Liang S, Dai H, Zhang X, Yu X, Cai Y, Zhang L, Wen N, Jiang B, Xu J (2010) Structure and properties of cellulose/chitin blended hydrogel membranes fabricated via a solution pre-gelation technique. Carbohydr Polym 79:677–684

    CAS  Google Scholar 

  • Xu A, Zhang Y (2015) Insight into dissolution mechanism of cellulose in [C4mim][CH3COO]/DMSO solvent by 13C NMR spectra. J Mol Struct 1088:101–104

    CAS  Google Scholar 

  • Xu F, Yu J, Tesso T, Dowell F, Wang D (2013) Qualitative and quantitative analysis of lignocellulosic biomass using infrared techniques: a mini-review. Appl Energy 104:801–809

    CAS  Google Scholar 

  • Yuan X, Cheng G (2015) From cellulose fibrils to single chains: understanding cellulose dissolution in ionic liquids. Phys Chem Chem Phys 17:31592–31607

    CAS  PubMed  Google Scholar 

  • Zhang L, Ruan D, Gao S (2002) Dissolution and regeneration of cellulose in NaOH/thiourea aqueous solution. J Polym Sci B 40:1521–1529

    CAS  Google Scholar 

  • Zhang C, Liu R, Xiang J, Kang H, Liu Z, Huang Y (2014) Dissolution mechanism of cellulose in N,N-dimethylacetamide/lithium chloride: revisiting through molecular interactions. J Phys Chem B 118:9507–9514

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Engineering Research and Development for Technology of the Department of Science and Technology (DOST-ERDT). The nanoQuench project (CHED PCARI IIID-2016-007) is acknowledged for the use of Raman Spectroscopy while Osaka University is also acknowledged for the XPS runs. Dr. N. Hideki is gratefully acknowledged for the assistance in the analysis of XPS data. M. Vasquez acknowledges the University of the Philippines Office of the Vice President for Academic Affairs BALIK-PhD Research Grant (OVPAA-BPhD-2014-01) and the Jardiolin Family Professorial Chair.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Magdaleno R. Vasquez Jr..

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lao, T.L.B., Cordura, S.L.A., Diaz, L.J.L. et al. Influence of plasma treatment on the dissolution of cellulose in lithium chloride–dimethylacetamide. Cellulose 27, 9801–9811 (2020). https://doi.org/10.1007/s10570-020-03454-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-020-03454-6

Keywords

Navigation