Skip to main content
Log in

Chitin nano-crystals/sodium lignosulfonate/Ag NPs nanocomposites: a potent and green catalyst for efficient removal of organic contaminants

  • Original Research
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

It is an emerging issue to chase a high performance of metal nanoparticles based catalytic systems with a small and uniform particle size. Herein, a study has been carried out towards the green and facile synthesis of silver nanoparticles (Ag NPs) based nanocomposites for efficient removal of emerging contaminants. Bioresources from the marine crustacean animals and traditional pulping process, such as chitin and lignin, have received great attention in bio-functional material areas. This research is to prepare chitin nano-crystals/sodium lignosulfonate/silver nanoparticles (ChNC@NaLS@AgNPs) nanocomposites for small and uniform particle size of Ag NPs. ChNC and NaLS acted as sustainable and efficient bio-supports during Ag NPs synthesis to synergistically control the particle size of Ag NPs. It was found that the Ag NPs synthesized in ChNC@NaLS@AgNPs nanocomposites had a smallest particle size and narrowest size distribution compared with that of the control. The catalytic degradation results showed that ChNC@NaLS@AgNPs nanocomposites exhibited highest catalytic degradation performance for model contaminants of Congo Red (k = 50.2 × 10−3 s−1) and TC·HCl (k = 0.0483 min−1). This research provides a great potential application of chitin and lignin in synthesizing nano-catalysts synergistically for high degradation performance of emerging contaminants in waste water.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Abay AK, Chen X, Kuo D-H (2017) Highly efficient noble metal free copper nickel oxysulfide nanoparticles for catalytic reduction of 4-nitrophenol, methyl blue, and rhodamine-B organic pollutants. New J Chem 41(13):5628–5638

    Article  CAS  Google Scholar 

  • An X, Wen Y, Almujil A, Cheng D, Li J, Jia X, Zou J, Ni Y (2016) Nano-fibrillated cellulose (NFC) as versatile carriers of TiO2 nanoparticles (TNPs) for photocatalytic hydrogen generation. RSC Adv 6(92):89457–89466

    Article  CAS  Google Scholar 

  • An X, Cheng D, Dai L, Wang B, Ocampo HJ, Nasrallah J, Jia X, Zou J, Long Y, Ni Y (2017a) Synthesis of nano-fibrillated cellulose/magnetite/titanium dioxide (NFC@Fe3O4@TNP) nanocomposites and their application in the photocatalytic hydrogen generation. Appl Catal B: Environ 206:53–64

    Article  CAS  Google Scholar 

  • An X, Long Y, Ni Y (2017b) Cellulose nanocrystal/hexadecyltrimethylammonium bromide/silver nanoparticle composite as a catalyst for reduction of 4-nitrophenol. Carbohydr Polym 156:253–258

    Article  CAS  PubMed  Google Scholar 

  • Arijit M, Debasmita M, Deb Kumar M (2018) Room-temperature synthesis of nickel nanoparticles and their use as catalyst for methyl orange dye degradation. Int J Nanotechnol 15(8–10):736

    Google Scholar 

  • Arora N, Mehta A, Mishra A, Basu S (2017) 4-Nitrophenol reduction catalysed by Au–Ag bimetallic nanoparticles supported on LDH: homogeneous versus heterogeneous catalysis. Appl Clay Sci 151:1–9

    Article  CAS  Google Scholar 

  • Barkhordari MR, Fathi M (2018) Production and characterization of chitin nanocrystals from prawn shell and their application for stabilization of Pickering emulsions. Food Hydrocolloid 82:338–345

    Article  CAS  Google Scholar 

  • Carlini L, Fasolato C, Postorino P, Fratoddi I, Venditti I, Testa G, Battocchio C (2017) Comparison between silver and gold nanoparticles stabilized with negatively charged hydrophilic thiols: SR-XPS and SERS as probes for structural differences and similarities. Colloids Surf A Physicochem Eng Aspects 532:183–188

    Article  CAS  Google Scholar 

  • Cheng H, Huang B, Wang P, Wang Z, Lou Z, Wang J, Qin X, Zhang X, Dai Y (2011) In situ ion exchange synthesis of the novel Ag/AgBr/BiOBr hybrid with highly efficient decontamination of pollutants. Chem Commun 47(25):7054–7056

    Article  CAS  Google Scholar 

  • Das TK, Ganguly S, Bhawal P, Remanan S, Ghosh S, Das NC (2018) A facile green synthesis of silver nanoparticles decorated silica nanocomposites using mussel inspired polydopamine chemistry and assessment its catalytic activity. J Environ Chem Eng 6(6):6989–7001

    Article  CAS  Google Scholar 

  • Dassanayake RS, Gunathilake C, Abidi N, Jaroniec M (2018) Activated carbon derived from chitin aerogels: preparation and CO2 adsorption. Cellulose 25(3):1911–1920

    Article  CAS  Google Scholar 

  • De Chirico A, Armanini M, Chini P, Cioccolo G, Provasoli F, Audisio G (2003) Flame retardants for polypropylene based on lignin. Polym Degrad Stab 79(1):139–145

    Article  Google Scholar 

  • Feng Q, Zhou J, Zhang Y (2019) Coupling Bi2MoO6 with persulfate for photocatalytic oxidation of tetracycline hydrochloride under visible light. J Mater Sci Mater Electron 30(21):19108–19118

    Article  CAS  Google Scholar 

  • Fu J, Wang S, Zhu J, Wang K, Gao M, Wang X, Xu Q (2018) Au-Ag bimetallic nanoparticles decorated multi-amino cyclophosphazene hybrid microspheres as enhanced activity catalysts for the reduction of 4-nitrophenol. Mater Chem Phys 207:315–324

    Article  CAS  Google Scholar 

  • Gosselink RJA, Abächerli A, Semke H, Malherbe R, Käuper P, Nadif A, van Dam JEG (2004) Analytical protocols for characterisation of sulphur-free lignin. Ind Crops Prod 19(3):271–281

    Article  CAS  Google Scholar 

  • Han SW, Kim Y, Kim K (1998) Dodecanethiol-derivatized Au/Ag bimetallic nanoparticles: TEM, UV/VIS, XPS, and FTIR analysis. J Colloid Interface Sci 208(1):272–278

    Article  CAS  PubMed  Google Scholar 

  • Hu S, Hsieh Y-L (2016) Silver nanoparticle synthesis using lignin as reducing and capping agents: a kinetic and mechanistic study. Int J Bio Macromol 82:856–862

    Article  CAS  Google Scholar 

  • Huang C, Wang X, Liang C, Jiang X, Yang G, Xu J, Yong Q (2019) A sustainable process for procuring biologically active fractions of high-purity xylooligosaccharides and water-soluble lignin from Moso bamboo prehydrolyzate. Biotechnol Biofuels 12(1):189

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ishihara M, Nguyen VQ, Mori Y, Nakamura S, Hattori H (2015) Adsorption of silver nanoparticles onto different surface structures of chitin/chitosan and correlations with antimicrobial activities. Int J Mol Sci 16(6):13973–13988

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jain P, Pradeep T (2005) Potential of silver nanoparticle-coated polyurethane foam as an antibacterial water filter. Biotechnol Bioeng 90(1):59–63

    Article  CAS  PubMed  Google Scholar 

  • Jeong Y, Kim J, Lee G-W (2009) Optimizing functionalization of multiwalled carbon nanotubes using sodium lignosulfonate. Colloid Polym Sci 288(1):1–6

    Article  CAS  Google Scholar 

  • Kajani AA, Bordbar AK (2019) Biogenic magnetite nanoparticles: a potent and environmentally benign agent for efficient removal of azo dyes and phenolic contaminants from water. J Hazard Mater 366:268–274

    Article  CAS  Google Scholar 

  • Kalaivani R, Maruthupandy M, Muneeswaran T, Hameedha Beevi A, Anand M, Ramakritinan CM, Kumaraguru AK (2018) Synthesis of chitosan mediated silver nanoparticles (Ag NPs) for potential antimicrobial applications. Front Labor Med 2(1):30–35

    Article  Google Scholar 

  • Kotal M, Kuila T, Srivastava SK, Bhowmick AK (2009) Synthesis and characterization of polyurethane/Mg-Al layered double hydroxide nanocomposites. J Appl Polym Sci 114(5):2691–2699

    Article  CAS  Google Scholar 

  • Li Z, Pang Y, Ge Y, Qiu X (2011) Evaluation of steric repulsive force in the aqueous dispersion system of dimethomorph powder with lignosulfonates via X-ray photoelectron spectroscopy. J Phys Chem C 115(50):24865–24870

    Article  CAS  Google Scholar 

  • Li Z, Zhang M, Cheng D, Yang R (2016) Preparation of silver nano-particles immobilized onto chitin nano-crystals and their application to cellulose paper for imparting antimicrobial activity. Carbohydr Polym 151:834–840

    Article  CAS  PubMed  Google Scholar 

  • Li M, Jiang X, Wang D, Xu Z, Yang M (2017) In situ reduction of silver nanoparticles in the lignin based hydrogel for enhanced antibacterial application. Colloids Surf B Biointerfaces 177:370–376

    Article  CAS  Google Scholar 

  • Liao J, Huang H (2020) Temperature/pH dual sensitive Hericium erinaceus residue carboxymethyl chitin/poly (N-isopropyl acrylamide) sequential IPN hydrogels. Cellulose 27:825–838

    Article  CAS  Google Scholar 

  • Liu Y, Gao L, Sun J (2007) Noncovalent functionalization of carbon nanotubes with sodium lignosulfonate and subsequent quantum dot decoration. J Phys Chem C 111(3):1223–1229

    Article  CAS  Google Scholar 

  • Liu P, Sehaqui H, Tingaut P, Wichser A, Oksman K, Mathew AP (2013) Cellulose and chitin nanomaterials for capturing silver ions (Ag+) from water via surface adsorption. Cellulose 21(1):449–461

    Article  CAS  Google Scholar 

  • Liu X, Liang M, Liu M, Su R, Wang M, Qi W, He Z (2016) Highly efficient catalysis of azo dyes using recyclable silver nanoparticles immobilized on tannic acid-grafted eggshell membrane. Nanoscale Res Lett 11(1):440

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ma J, Khan MA, Xia M, Fu C, Zhu S, Chu Y, Lei W, Wang F (2019) Effective adsorption of heavy metal ions by sodium lignosulfonate reformed montmorillonite. Int J Bio Macromol 138:188–197

    Article  CAS  Google Scholar 

  • Maria L, Santos AL, Oliveira PC, Valle AS, Barud HS, Messaddeq Y, Ribeiro SJ (2010) Preparation and antibacterial activity of silver nanoparticles impregnated in bacterial cellulose. Polimeros 20(1):72–77

    Article  CAS  Google Scholar 

  • Murugan E, Shanmugam P (2016) Surface grafted hyper-branched polyglycerol stabilized Ag and AuNPs heterogeneous catalysts for efficient reduction of congo red. J Nanosci Nanotechnol 16(1):38–426

    Article  CAS  Google Scholar 

  • Myrvold BO (2008) A new model for the structure of lignosulphonates: Part 1. Behaviour in dilute solutions. Ind Crops Prod 27(2):214–219

    Article  CAS  Google Scholar 

  • Nabeela K, Thomas RT, Nair JB, Maiti KK, Warrier KGK, Pillai S (2016) TEMPO-oxidized nanocellulose fiber-directed stable aqueous suspension of plasmonic flower-like silver nanoconstructs for ultra-trace detection of analytes. ACS Appl Mater Interfaces 8(43):29242–29251

    Article  CAS  PubMed  Google Scholar 

  • Oun AA, Rhim JW (2017a) Effect of oxidized chitin nanocrystals isolated by ammonium persulfate method on the properties of carboxymethyl cellulose-based films. Carbohydr Polym 175:712–720

    Article  CAS  PubMed  Google Scholar 

  • Oun AA, Rhim JW (2017b) Preparation of multifunctional chitin nanowhiskers/ZnO-Ag NPs and their effect on the properties of carboxymethyl cellulose-based nanocomposite film. Carbohydr Polym 169:467–479

    Article  CAS  PubMed  Google Scholar 

  • Oun AA, Rhim JW (2018) Effect of isolation methods of chitin nanocrystals on the properties of chitin-silver hybrid nanoparticles. Carbohydr Polym 197:349–358

    Article  CAS  PubMed  Google Scholar 

  • Pal S, Tak YK, Song JM (2007) Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium. Appl Environ Microbiol 73(6):1712–1720

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pang B, Yan J, Yao L, Liu H, Guan J, Wang H, Liu H (2016) Preparation and characterization of antibacterial paper coated with sodium lignosulfonate stabilized ZnO nanoparticles. RSC Adv 6(12):9753–9759

    Article  CAS  Google Scholar 

  • Pang J, Zhang W, Zhang H, Zhang J, Zhang H, Cao G, Han M, Yang Y (2018) Sustainable nitrogen-containing hierarchical porous carbon spheres derived from sodium lignosulfonate for high-performance supercapacitors. Carbon 132:280–293

    Article  CAS  Google Scholar 

  • Pradhan N, Pal A, Pal T (2002) Silver nanoparticle catalyzed reduction of aromatic nitro compounds. Colloids Surf A 196(2–3):247–257

    Article  CAS  Google Scholar 

  • Qiu X, Yan M, Yang D, Pang Y, Deng Y (2009) Effect of straight-chain alcohols on the physicochemical properties of calcium lignosulfonate. J Colloid Interface Sci 338(1):151–155

    Article  CAS  PubMed  Google Scholar 

  • Qiu X, Kong Q, Zhou M, Yang D (2010) Aggregation behavior of sodium lignosulfonate in water solution. J Phys Chem B 114(48):15857–15861

    Article  CAS  PubMed  Google Scholar 

  • Rajendiran R, Patchaiyappan A, Balla P, Rengarajan V (2019) Self-assembled uniform silver nanoparticles (SAAgNPs) and their supported MoO3 nanocatalysts for effective degradation of azo dyes. Chem Select 4(36):10770–10776

    Google Scholar 

  • Seta FT, An X, Liu L, Zhang H, Yang J, Zhang W, Nie S, Yao S, Cao H, Xu Q, Bu Y, Liu H (2020) Preparation and characterization of high yield cellulose nanocrystals (CNC) derived from ball mill pretreatment and maleic acid hydrolysis. Carbohydr Polym 234:115942

    Article  CAS  PubMed  Google Scholar 

  • Shen Z, Luo Y, Wang Q, Wang X, Sun R (2014) High-value utilization of lignin to synthesize Ag nanoparticles with detection capacity for Hg2+. ACS Appl Mater Interfaces 6(18):16147–16155

    Article  CAS  PubMed  Google Scholar 

  • Singh S, Maspoch ML, Oksman K (2019) Crystallization of triethyl-citrate-plasticized poly(lactic acid) induced by chitin nanocrystals. J Appl Polym Sci 136(36):47936

    Article  CAS  Google Scholar 

  • Suzuki S, Teramoto Y (2017) Simple inkjet process to fabricate microstructures of chitinous nanocrystals for cell patterning. Biomacromol 18(6):1993–1999

    Article  CAS  Google Scholar 

  • Tang H, Lu A, Li L, Zhou W, Xie Z, Zhang L (2013) Highly antibacterial materials constructed from silver molybdate nanoparticles immobilized in chitin matrix. Chem Eng J 234:124–131

    Article  CAS  Google Scholar 

  • Uddin KMA, Lokanathan AR, Liljeström A, Chen X, Rojas OJ, Laine J (2014) Silver nanoparticle synthesis mediated by carboxylated cellulose nanocrystals. Green Mater 2(4):183–192

    Article  Google Scholar 

  • Wang B, Li J, Zhang J, Li H, Chen P, Gu Q, Wang Z (2013) Thermo-mechanical properties of the composite made of poly (3-hydroxybutyrate-co-3-hydroxyvalerate) and acetylated chitin nanocrystals. Carbohydr Polym 95(1):100–106

    Article  CAS  PubMed  Google Scholar 

  • Wu J, Zhao N, Zhang X, Xu J (2012) Cellulose/silver nanoparticles composite microspheres: eco-friendly synthesis and catalytic application. Cellulose 19(4):1239–1249

    Article  CAS  Google Scholar 

  • Wu D, Bai Y, Wang W, Xia H, Tan F, Zhang S, Su B, Wang X, Qiao X, Wong PK (2019) Highly pure MgO2 nanoparticles as robust solid oxidant for enhanced Fenton-like degradation of organic contaminants. J Hazard Mater 374:319–328

    Article  CAS  PubMed  Google Scholar 

  • Xiao S, Tan Y, Xu J, Xiong C, Wang X, Su S (2014) Lignosulfonate as dispersant for layered double hydroxide in nitrile–butadiene rubber composites. Appl Clay Sci 97–98:91–95

    Article  CAS  Google Scholar 

  • Xu R, Wang D, Zhang J, Li Y (2006) Shape-dependent catalytic activity of silver nanoparticles for the oxidation of styrene. Chem Asia J 1(6):888–893

    Article  CAS  Google Scholar 

  • Yoshitsugu K, Ken-ichirou S, Kazuhiro F, Megumi S, Toshio Y, Yasuaki K, Hiroaki H (2002) Hydrogen generation using sodium borohydride solution and metal catalyst coated on metal oxide. Int J Hydro Energy 27(10):1029–1034

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xingye An or Hongbin Liu.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 2362 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, J., An, X., Liu, L. et al. Chitin nano-crystals/sodium lignosulfonate/Ag NPs nanocomposites: a potent and green catalyst for efficient removal of organic contaminants. Cellulose 27, 5071–5087 (2020). https://doi.org/10.1007/s10570-020-03161-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-020-03161-2

Keywords

Navigation