Skip to main content
Log in

Bacterial nanocellulose in papermaking

  • Review Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Bacterial nanocellulose (BNC) is a unique natural nanomaterial that shares very few similarities with other natural or industrially produced nanomaterials. BNC can be produced by a variety of bacteria, as a survival aid in different ecological niches. BNC is traditionally produced by static or shaking culture methods, and the ‘mother vinegar’, or biofilm, is a typical example of this product after static vinegar fermentation. BNC has great potential in biomedicine, and recent studies have also demonstrated its use in the papermaking industry. It has nanoscale fiber size and large numbers of free hydroxyl groups, which ensure high inter-fiber hydrogen bonding. Thus, BNC has great potential as a reinforcing material, and is especially applicable for recycled paper and for paper made of nonwoody cellulose fiber. As well as enhancing the strength and durability of paper, modified BNC shows great potential for production of fire resistant and specialized papers. However, the biotechnological aspects of BNC need to be improved to minimize the cost of its production, and to thus make this process economically feasible.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

BNC:

Bacterial nanocellulose

UDP:

Uridine diphosphate

References

  • Aitomäki Y, Oksman K (2014) Reinforcing efficiency of nanocellulose in polymers. React Funct Polym 85:151–156

    Article  CAS  Google Scholar 

  • Ashjaran A, Yazdanshenas ME, Rashidi A et al (2013) Overview of bio nanofabric from bacterial cellulose. J Text Inst 104:121–131

    Article  CAS  Google Scholar 

  • Balea A, Merayo N, Fuente E et al (2017) Cellulose nanofibers from residues to improve linting and mechanical properties of recycled paper. Cellulose 25:1339–1351

    Article  CAS  Google Scholar 

  • Basta AH, El-Saied H (2009) Performance of improved bacterial cellulose application in the production of functional paper. J Appl Microbiol 107:2098–2107

    Article  CAS  PubMed  Google Scholar 

  • Blanco A, Miranda R, Monte MC (2013) Extending the limits of paper recycling: improvements along the paper value chain. For Syst 22:471–483

    Google Scholar 

  • Brown AJ (1886) XIX. The chemical action of pure cultivations of bacterium aceti. J Chem Soc Trans 49:172–187

    Article  CAS  Google Scholar 

  • Brown RM (2004) Cellulose structure and biosynthesis: what is in store for the 21st century? J Polym Sci Part Polym Chem 42:487–495

    Article  CAS  Google Scholar 

  • Brown RM, Willison JH, Richardson CL (1976) Cellulose biosynthesis in Acetobacter xylinum: visualization of the site of synthesis and direct measurement of the in vivo process. Proc Natl Acad Sci USA 73:4565–4569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Campano C, Balea A, Blanco A, Negro C (2016) Enhancement of the fermentation process and properties of bacterial cellulose: a review. Cellulose 23:57–91

    Article  CAS  Google Scholar 

  • Campano C, Merayo N, Balea A et al (2018a) Mechanical and chemical dispersion of nanocelluloses to improve their reinforcing effect on recycled paper. Cellulose 25:269–280

    Article  CAS  Google Scholar 

  • Campano C, Merayo N, Negro C, Blanco Á (2018b) Low-fibrillated bacterial cellulose nanofibers as a sustainable additive to enhance recycled paper quality. Int J Biol Macromol 114:1077–1083

    Article  CAS  PubMed  Google Scholar 

  • Campano C, Merayo N, Negro C, Blanco A (2018c) In-situ production of bacterial cellulose to economically improve recycled paper properties. Int J Biol Macromol 118:1532–1541

    Article  CAS  PubMed  Google Scholar 

  • Carreira P, Mendes JAS, Trovatti E et al (2011) Utilization of residues from agro-forest industries in the production of high value bacterial cellulose. Bioresour Technol 102:7354–7360

    Article  CAS  PubMed  Google Scholar 

  • Chang W-S, Chen H-H (2016) Physical properties of bacterial cellulose composites for wound dressings. Food Hydrocoll 53:75–83

    Article  CAS  Google Scholar 

  • Chao Y, Ishida T, Sugano Y, Shoda M (2000) Bacterial cellulose production by Acetobacter xylinum in a 50-L internal-loop airlift reactor. Biotechnol Bioeng 68:345–352

    Article  CAS  PubMed  Google Scholar 

  • Chawla PR, Bajaj IB, Survase SA, Singhal RS (2009) Microbial cellulose: fermentative production and applications. Food Technol Biotechnol 47:107–124

    CAS  Google Scholar 

  • Cheng H-P, Wang P-M, Chen J-W, Wu W-T (2002) Cultivation of Acetobacter xylinum for bacterial cellulose production in a modified airlift reactor. Biotechnol Appl Biochem 35:125–132

    Article  CAS  PubMed  Google Scholar 

  • Dahman Y (2009) Nanostructured biomaterials and biocomposites from bacterial cellulose nanofibers. J Nanosci Nanotechnol 9:5105–5122

    Article  CAS  PubMed  Google Scholar 

  • Donini ÍAN, Salvi DTBD, Fukumoto FK et al (2010) Biossíntese e recentes avanços na produção de celulose bacteriana. Eclética Quím 35:165–178

    Article  CAS  Google Scholar 

  • Eichhorn SJ, Baillie CA, Zafeiropoulos N et al (2001) Review: current international research into cellulosic fibres and composites. J Mater Sci 36:2107–2131

    Article  CAS  Google Scholar 

  • Eichhorn SJ, Dufresne A, Aranguren M et al (2009) Review: current international research into cellulose nanofibres and nanocomposites. J Mater Sci 45:1–33

    Article  CAS  Google Scholar 

  • El-Saied H, El-Diwany AI, Basta AH et al (2008) Production and characterization of economical bacterial cellulose. BioResources 3:1196–1217

    CAS  Google Scholar 

  • Fang L, Catchmark JM (2014) Characterization of water-soluble exopolysaccharides from Gluconacetobacter xylinus and their impacts on bacterial cellulose crystallization and ribbon assembly. Cellulose 21:3965–3978

    Article  CAS  Google Scholar 

  • Fillat A, Martínez J, Valls C et al (2018) Bacterial cellulose for increasing barrier properties of paper products. Cellulose 25:6093–6105

    Article  CAS  Google Scholar 

  • Fu L, Zhang J, Yang G (2013) Present status and applications of bacterial cellulose-based materials for skin tissue repair. Carbohydr Polym 92:1432–1442

    Article  CAS  PubMed  Google Scholar 

  • Gallegos AMA, Carrera SH, Parra R et al (2016) Bacterial cellulose: a sustainable source to develop value-added products—a review. BioResources 11:5641–5655

    Article  CAS  Google Scholar 

  • Gao W-H, Chen K-F, Yang R-D et al (2010) Properties of bacterial cellulose ad its influence on the physical properties of paper. BioResources 6:144–153

    Google Scholar 

  • Gatenholm P, Klemm D (2010) Bacterial nanocellulose as a renewable material for biomedical applications. MRS Bull 35:208–213

    Article  CAS  Google Scholar 

  • Goncalves M, Łaszkiewicz B (1999) Celuloza bakteryjna—biosynteza, właściwości i zastosowanie. Prz Pap R 55:657–661

    Google Scholar 

  • Hamada H, Beckvermit J, Bousfield D (2010) Nanofibrillated cellulose with fine clay as a coating agent to improve print quality. In: Paper conference and trade show, PaperCon, pp 854–880

  • Hon DN-S (1994) Cellulose: a random walk along its historical path. Cellulose 1:1–25

    Article  CAS  Google Scholar 

  • Hong F, Zhu YX, Yang G, Yang XX (2011) Wheat straw acid hydrolysate as a potential cost-effective feedstock for production of bacterial cellulose. J Chem Technol Biotechnol 86:675–680

    Article  CAS  Google Scholar 

  • Hornung M, Ludwig M, Schmauder HP (2007) Optimizing the production of bacterial cellulose in surface culture: a novel aerosol bioreactor working on a fed batch principle (part 3). Eng Life Sci 7:35–41

    Article  CAS  Google Scholar 

  • Huang Y, Zhu C, Yang J et al (2014) Recent advances in bacterial cellulose. Cellulose 21:1–30

    Article  Google Scholar 

  • Hubbe MA (2013) Prospects for maintaining strength of paper and paperboard products while using less forest resources: a review. BioResources 9:1634–1763

    Article  Google Scholar 

  • Iguchi M, Yamanaka S, Budhiono A (2000) Bacterial cellulose—a masterpiece of nature’s arts. J Mater Sci 35:261–270

    Article  CAS  Google Scholar 

  • Ishihara M, Matsunaga M, Hayashi N, Tišler V (2002) Utilization of d-xylose as carbon source for production of bacterial cellulose. Enzym Microb Technol 31:986–991

    Article  CAS  Google Scholar 

  • Jeon S, Yoo Y-M, Park J-W et al (2014) Electrical conductivity and optical transparency of bacterial cellulose based composite by static and agitated methods. Curr Appl Phys 14:1621–1624

    Article  Google Scholar 

  • Jonas R, Farah LF (1998) Production and application of microbial cellulose. Polym Degrad Stab 59:101–106

    Article  CAS  Google Scholar 

  • Jozala AF, de Lencastre-Novaes LC, Lopes AM et al (2016) Bacterial nanocellulose production and application: a 10-year overview. Appl Microbiol Biotechnol 100:2063–2072

    Article  CAS  PubMed  Google Scholar 

  • Jung JY, Khan T, Park JK, Chang HN (2007) Production of bacterial cellulose by Gluconacetobacter hansenii using a novel bioreactor equipped with a spin filter. Korean J Chem Eng 24:265–271

    Article  CAS  Google Scholar 

  • Karlovits I, Lavrič G (2018) The influence of nanocellulose addition on printing properties of recycled paper. In: Gane P (ed) Advances in printing and media technology: proceedings of the 45th international research conference of Iarigai, pp 49–54

  • Kawano Y, Saotome T, Ochiai Y et al (2011) Cellulose accumulation and a cellulose synthase gene are responsible for cell aggregation in the cyanobacterium Thermosynechococcus vulcanus RKN. Plant Cell Physiol 52:957–966

    Article  CAS  PubMed  Google Scholar 

  • Keshk SM (2014) Bacterial cellulose production and its industrial applications. J Bioprocess Biotech 4:1–10

    Article  CAS  Google Scholar 

  • Keshk SMAS, Sameshima K (2005) Evaluation of different carbon sources for bacterial cellulose production. Afr J Biotechnol 4:478–482

    CAS  Google Scholar 

  • Kim C-W, Kim D-S, Kang S-Y et al (2006) Structural studies of electrospun cellulose nanofibers. Polymer 14:5097–5107

    Article  CAS  Google Scholar 

  • Kim Y-J, Kim J-N, Wee Y-J et al (2007) Bacterial cellulose production by Gluconacetobacter sp. PKY5 in a rotary biofilm contactor. Appl Biochem Biotechnol 137:529–537

    PubMed  Google Scholar 

  • Klemm D, Schumann D, Udhardt U, Marsch S (2001) Bacterial synthesized cellulose—artificial blood vessels for microsurgery. Prog Polym Sci 26:1561–1603

    Article  CAS  Google Scholar 

  • Klemm D, Kramer F, Moritz S et al (2011) Nanocelluloses: a new family of nature-based materials. Angew Chem Int Ed Engl 50:5438–5466

    Article  CAS  PubMed  Google Scholar 

  • Kongruang S (2008) Bacterial cellulose production by Acetobacter xylinum strains from agricultural waste products. Appl Biochem Biotechnol 148:245–256

    Article  CAS  PubMed  Google Scholar 

  • Kose R, Yamaguchi K, Okayama T (2016) Preparation of fine fiber sheets from recycled pulp fibers using aqueous counter collision. Cellulose 23:1393–1399

    Article  CAS  Google Scholar 

  • Kralisch D, Hessler N, Klemm D et al (2010) White biotechnology for cellulose manufacturing—the HoLiR concept. Biotechnol Bioeng 105:740–747

    CAS  PubMed  Google Scholar 

  • Kurosumi A, Sasaki C, Yamashita Y, Nakamura Y (2009) Utilization of various fruit juices as carbon source for production of bacterial cellulose by Acetobacter xylinum NBRC 13693. Carbohydr Polym 76:333–335

    Article  CAS  Google Scholar 

  • Laftah WA, Rahman WAWA (2016) Pulping process and the potential of using nonwood pineapple leaves fiber for pulp and paper production: a review. J Nat Fibers 13:85–102

    Article  CAS  Google Scholar 

  • Lavoine N, Desloges I, Dufresne A, Bras J (2012) Microfibrillated cellulose—its barrier properties and applications in cellulosic materials: a review. Carbohydr Polym 90:735–764

    Article  CAS  PubMed  Google Scholar 

  • Lavrič G (2016) Efficiency of fibrillation of cellulose fibres process by enzymes. MSc thesis, University of Ljubljana, Ljubljana, Slovenia

  • Lee K-Y, Buldum G, Mantalaris A, Bismarck A (2014) More than meets the eye in bacterial cellulose: biosynthesis, bioprocessing, and applications in advanced fiber composites. Macromol Biosci 14:10–32

    Article  CAS  PubMed  Google Scholar 

  • Legnani C, Vilani C, Calil VL et al (2008) Bacterial cellulose membrane as flexible substrate for organic light emitting devices. Thin Solid Films 517:1016–1020

    Article  CAS  Google Scholar 

  • Lim G-H, Lee J, Kwon N et al (2016) Fabrication of flexible magnetic papers based on bacterial cellulose and barium hexaferrite with improved mechanical properties. Electron Mater Lett 12:574–579

    Article  CAS  Google Scholar 

  • Lin N, Dufresne A (2014) Nanocellulose in biomedicine: current status and future prospect. Eur Polym J 59:302–325

    Article  CAS  Google Scholar 

  • Lin S-P, Loira Calvar I, Catchmark JM et al (2013) Biosynthesis, production and applications of bacterial cellulose. Cellulose 20:2191–2219

    Article  CAS  Google Scholar 

  • Luu WT, Bousfield D, Kettle J (2011) Application of nano-fibrillated cellulose as a paper surface treatment for inkjet printing. In: Paper conference and trade show, PaperCon, pp 1152–1163

  • Masaoka S, Ohe T, Sakota N (1993) Production of cellulose from glucose by Acetobacter xylinum. J Ferment Bioeng 75:18–22

    Article  CAS  Google Scholar 

  • Matsuoka M, Tsuchida T, Matsushita K et al (1996) A synthetic medium for bacterial cellulose production by Acetobacter xylinum subsp. sucrofermentans. Biosci Biotechnol Biochem 60:575–579

    Article  CAS  Google Scholar 

  • Medvešček S (2017) Influence of nanocrystallized cellulose on paper printability. MSc thesis, University of Ljubljana, Ljubljana, Slovenia

  • Mikkelsen D, Flanagan BM, Dykes GA, Gidley MJ (2009) Influence of different carbon sources on bacterial cellulose production by Gluconacetobacter xylinus strain ATCC 53524. J Appl Microbiol 107:576–583

    Article  CAS  PubMed  Google Scholar 

  • Mohite BV, Patil SV (2014) A novel biomaterial: bacterial cellulose and its new era applications. Biotechnol Appl Biochem 61:101–110

    Article  CAS  PubMed  Google Scholar 

  • Morgan JLW, Strumillo J, Zimmer J (2013) Crystallographic snapshot of cellulose synthesis and membrane translocation. Nature 493:181–186

    Article  CAS  PubMed  Google Scholar 

  • Mormino R, Bungay H (2003) Composites of bacterial cellulose and paper made with a rotating disk bioreactor. Appl Microbiol Biotechnol 62:503–506

    Article  CAS  PubMed  Google Scholar 

  • Nunes T, Lourenço AF, Gamelas JAF, Ferreira PJT (2015) Cellulose nanofibrils in papermaking—filler retention, wet web resistance and printability. In: Proceedings of the second international conference on natural fibers, pp 27–29

  • Nygårds S (2011) Nanocellulose in pigment coatings—aspects of barrier properties and printability in offset. MSc thesis, Linköping University, Linköping, Sweden

  • Osong SH, Norgren S, Engstrand P (2016) Processing of wood-based microfibrillated cellulose and nanofibrillated cellulose, and applications relating to papermaking: a review. Cellulose 23:93–123

    Article  CAS  Google Scholar 

  • Poland CA, Duffin R, Kinloch I et al (2008) Carbon nanotubes introduced into the abdominal cavity of mice show asbestos-like pathogenicity in a pilot study. Nat Nanotechnol 3:423–428

    Article  CAS  PubMed  Google Scholar 

  • Presler S, Surma-Ślusarska B (2006) Modyfikacja roślinnych półproduktów papierniczych celulozą bakteryjną. Przem Chem T85(8–9):1297–1299

    Google Scholar 

  • Puceković N, Hooimeijer A, Lozo B (2015) Cellulose nanocrystals coating—a novel paper coating for use in the graphic industry. Acta Graph 26:21–26

    Google Scholar 

  • Putra A, Kakugo A, Furukawa H et al (2008) Tubular bacterial cellulose gel with oriented fibrils on the curved surface. Polymer 49:1885–1891

    Article  CAS  Google Scholar 

  • Rajwade JM, Paknikar KM, Kumbhar JV (2015) Applications of bacterial cellulose and its composites in biomedicine. Appl Microbiol Biotechnol 99:2491–2511

    Article  CAS  PubMed  Google Scholar 

  • Retegi A, Gabilondo N, Peña C et al (2010) Bacterial cellulose films with controlled microstructure–mechanical property relationships. Cellulose 17:661–669

    Article  CAS  Google Scholar 

  • Römling U (2002) Molecular biology of cellulose production in bacteria. Res Microbiol 153:205–212

    Article  PubMed  Google Scholar 

  • Römling U, Galperin MY (2015) Bacterial cellulose biosynthesis: diversity of operons, subunits, products, and functions. Trends Microbiol 23:545–557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rosa JR, da Silva ISV, de Lima CSM et al (2014) New biphasic mono-component composite material obtained by partial oxypropylation of bacterial cellulose. Cellulose 21:1361–1368

    CAS  Google Scholar 

  • Ross P, Mayer R, Benziman M (1991) Cellulose biosynthesis and function in bacteria. Microbiol Rev 55:35–58

    CAS  PubMed  PubMed Central  Google Scholar 

  • Santos SM, Carbajo JM, Quintana E et al (2015) Characterization of purified bacterial cellulose focused on its use on paper restoration. Carbohydr Polym 116:173–181

    Article  CAS  PubMed  Google Scholar 

  • Santos SM, Carbajo JM, Gómez N et al (2016) Use of bacterial cellulose in degraded paper restoration. Part II: application on real samples. J Mater Sci 51:1553–1561

    Article  CAS  Google Scholar 

  • Santos SM, Carbajo JM, Gómez N et al (2017) Paper reinforcing by in situ growth of bacterial cellulose. J Mater Sci 52:5882–5893

    Article  CAS  Google Scholar 

  • Schramm M, Hestrin S (1954) Factors affecting production of cellulose at the air/liquid interface of a culture of Acetobacter xylinum. J Gen Microbiol 11:123–129

    Article  CAS  PubMed  Google Scholar 

  • Schrecker ST, Gostomski PA (2005) Determining the water holding capacity of microbial cellulose. Biotechnol Lett 27:1435–1438

    Article  CAS  PubMed  Google Scholar 

  • Serafica G, Mormino R, Bungay H (2002) Inclusion of solid particles in bacterial cellulose. Appl Microbiol Biotechnol 58:756–760

    Article  CAS  PubMed  Google Scholar 

  • Shah J, Brown RM (2005) Towards electronic paper displays made from microbial cellulose. Appl Microbiol Biotechnol 66:352–355

    Article  CAS  PubMed  Google Scholar 

  • Shah N, Ul-Islam M, Khattak WA, Park JK (2013) Overview of bacterial cellulose composites: a multipurpose advanced material. Carbohydr Polym 98:1585–1598

    Article  CAS  PubMed  Google Scholar 

  • Shoda M, Sugano Y (2005) Recent advances in bacterial cellulose production. Biotechnol Bioprocess Eng 10:1–8

    Article  CAS  Google Scholar 

  • Siró I, Plackett D (2010) Microfibrillated cellulose and new nanocomposite materials: a review. Cellulose 17:459–494

    Article  CAS  Google Scholar 

  • Somerville C (2006) Cellulose synthesis in higher plants. Annu Rev Cell Dev Biol 22:53–78

    Article  CAS  PubMed  Google Scholar 

  • Son H-J, Kim H-G, Kim K-K et al (2003) Increased production of bacterial cellulose by Acetobacter sp. V6 in synthetic media under shaking culture conditions. Bioresour Technol 86:215–219

    Article  PubMed  Google Scholar 

  • Song H-J, Li H, Seo J-H et al (2009) Pilot-scale production of bacterial cellulose by a spherical type bubble column bioreactor using saccharified food wastes. Korean J Chem Eng 26:141–146

    Article  Google Scholar 

  • Suwannapinunt N, Burakorn J, Thaenthanee S (2007) Effect of culture conditions on bacterial BC (BC) production from Acetobacter xylinum TISTR976 and physical properties of BC parchment paper. J Sci Technol 14:357–365

    Google Scholar 

  • Tabarsa T, Sheykhnazari S, Ashori A et al (2017) Preparation and characterization of reinforced papers using nano bacterial cellulose. Int J Biol Macromol 101:334–340

    Article  CAS  PubMed  Google Scholar 

  • Tang W, Jia S, Jia Y, Yang H (2009) The influence of fermentation conditions and post-treatment methods on porosity of bacterial cellulose membrane. World J Microbiol Biotechnol 26:125–131

    Article  CAS  Google Scholar 

  • Ummartyotin S, Juntaro J, Sain M, Manuspiya H (2012) Development of transparent bacterial cellulose nanocomposite film as substrate for flexible organic light emitting diode (OLED) display. Ind Crops Prod 35:92–97

    Article  CAS  Google Scholar 

  • Vitta S, Thiruvengadam V (2012) Multifunctional bacterial cellulose and nanoparticle-embedded composites. Curr Sci 102:1398–1405

    CAS  Google Scholar 

  • Watanabe K, Tabuchi M, Morinaga Y, Yoshinaga F (1998) Structural features and properties of bacterial cellulose produced in agitated culture. Cellulose 5:187–200

    Article  CAS  Google Scholar 

  • Whitney JC, Howell PL (2013) Synthase-dependent exopolysaccharide secretion in Gram-negative bacteria. Trends Microbiol 21:63–72

    Article  CAS  PubMed  Google Scholar 

  • Williams WS, Cannon RE (1989) Alternative environmental roles for cellulose produced by Acetobacter xylinum. Appl Environ Microbiol 55:2448–2452

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wu J-M, Liu R-H (2012) Thin stillage supplementation greatly enhances bacterial cellulose production by Gluconacetobacter xylinus. Carbohydr Polym 90:116–121

    Article  CAS  PubMed  Google Scholar 

  • Wu R-Q, Li Z-X, Yang J-P et al (2010) Mutagenesis induced by high hydrostatic pressure treatment: a useful method to improve the bacterial cellulose yield of a Gluconoacetobacter xylinus strain. Cellulose 17:399–405

    Article  CAS  Google Scholar 

  • Xiang Z, Jin X, Liu Q et al (2017a) The reinforcement mechanism of bacterial cellulose on paper made from woody and nonwoody fiber sources. Cellulose 24:5147–5156

    Article  CAS  Google Scholar 

  • Xiang Z, Liu Q, Chen Y, Lu F (2017b) Effects of physical and chemical structures of bacterial cellulose on its enhancement to paper physical properties. Cellulose 24:3513–3523

    Article  CAS  Google Scholar 

  • Yamada Y, Yukphan P, Lan Vu HT et al (2012) Description of Komagataeibacter gen. nov., with proposals of new combinations (Acetobacteraceae). J Gen Appl Microbiol 58:397–404

    Article  CAS  PubMed  Google Scholar 

  • Yang YK, Park SH, Hwang JW et al (1998) Cellulose production by Acetobacter xylinum BRC5 under agitated condition. J Ferment Bioeng 85:312–317

    Article  CAS  Google Scholar 

  • Yoshinaga F, Tonouchi N, Watanabe K (1997) Research progress in production of bacterial cellulose by aeration and agitation culture and its application as a new industrial material. Biosci Biotechnol Biochem 61:219–224

    Article  CAS  Google Scholar 

  • Yousefi H, Faezipour M, Hedjazi S et al (2013) Comparative study of paper and nanopaper properties prepared from bacterial cellulose nanofibers and fibers/ground cellulose nanofibers of canola straw. Ind Crops Prod 43:732–737

    Article  CAS  Google Scholar 

  • Yu X, Atalla RH (1996) Production of cellulose II by Acetobacter xylinum in the presence of 2,6-dichlorobenzonitrile. Int J Biol Macromol 19:145–146

    Article  CAS  PubMed  Google Scholar 

  • Yuan J, Wang T, Huang X, Wei W (2016) Dispersion and beating of bacterial cellulose and their influence on paper properties. BioResources 11:9290–9301

    CAS  Google Scholar 

  • Zaar K (1979) Visualization of pores (export sites) correlated with cellulose production in the envelope of the gram-negative bacterium Acetobacter xylinum. J Cell Biol 80:773–777

    Article  CAS  PubMed  Google Scholar 

  • Zhou LL, Sun DP, Hu LY et al (2007) Effect of addition of sodium alginate on bacterial cellulose production by Acetobacter xylinum. J Ind Microbiol Biotechnol 34:483–489

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The author gratefully acknowledges Dr. Christopher Berrie for editing of the manuscript, Dr. Kristina Sepčić and Gregor Lavrič for critical reading of the manuscript, and the Slovenian Research Agency for financial support (Grant P1-0207).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matej Skočaj.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Skočaj, M. Bacterial nanocellulose in papermaking. Cellulose 26, 6477–6488 (2019). https://doi.org/10.1007/s10570-019-02566-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-019-02566-y

Keywords

Navigation