Skip to main content

Advertisement

Log in

Direct screen printing of single-faced conductive cotton fabrics for strain sensing, electrical heating and color changing

  • Original Research
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

A simple but effective method of developing multifunctional wearable cotton fabrics was achieved via screen printing of carbon nanotube (CNT) ink on one side of a weft knitted cotton fabrics. Scanning electron microscopy was employed to investigate the morphology of the CNT/Cotton Composite fabric (CCCF). The deposition of conductive CNT paste has brought electric conductivity (50.75 Ω/sq) to CCCF. The electromechanical performance of the CCCF was evaluated, and the CCCF showed great stability and flexibility in terms of strain sensing. The CCCF was demonstrated to sense different human activities such as speaking, drinking, writing, and bending of finger and wrist. The developed CCCF also exhibited excellent electrothermal performance with the potential to be used as an electric heater. Color changing performance was generated by screen printing thermochromic inks on the back side of CCCF. The flexible strain sensors, electric heaters, and color-changing textiles made from CCCF are promising candidates as smart textiles to be used as wearable electronic devices, cold weather conditioners, and smart displays.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Alimohammadi F et al (2013) Functional cellulose fibers via polycarboxylic acid/carbon nanotube composite coating. J Coat Technol Res 10(1):123–132

    Article  CAS  Google Scholar 

  • Arapov K et al (2016) Conductive screen printing inks by gelation of graphene dispersions. Adv Funct Mater 26(4):586–593

    Article  CAS  Google Scholar 

  • Choi C et al (2018) Weavable asymmetric carbon nanotube yarn supercapacitor for electronic textiles. RSC Adv 8(24):13112–13120

    Article  CAS  Google Scholar 

  • Das C, Krishnamoorthy K (2016) Flexible microsupercapacitors using silk and cotton substrates. ACS Appl Mater Interfaces 8(43):29504–29510

    Article  CAS  PubMed  Google Scholar 

  • Denneulin A et al (2011) Substrate pre-treatment of flexible material for printed electronics with carbon nanotube based ink. Appl Surf Sci 257(8):3645–3651

    Article  CAS  Google Scholar 

  • Di J et al (2016) Carbon-nanotube fibers for wearable devices and smart textiles. Adv Mater 28(47):10529–10538

    Article  CAS  PubMed  Google Scholar 

  • Gao N et al (2019) Crystal-confined freestanding ionic liquids for reconfigurable and repairable electronics. Nat Commun 10(1):547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Govaert F, Vanneste M (2014) Preparation and application of conductive textile coatings filled with honeycomb structured carbon nanotubes. J Nanomater 2014:13

    Article  CAS  Google Scholar 

  • Gui Q et al (2017) A skin-inspired integrated sensor for synchronous monitoring of multiparameter signals. Adv Funct Mater 27(36):1702050

    Article  CAS  Google Scholar 

  • He Y et al (2015) A self-healing electronic sensor based on thermal-sensitive fluids. Adv Mater 27(31):4622–4627

    Article  CAS  PubMed  Google Scholar 

  • He X et al (2017) Transparent electrode based on silver nanowires and polyimide for film heater and flexible solar cell. Materials 10(12):1362

    Article  CAS  PubMed Central  Google Scholar 

  • Hong S et al (2015) Highly stretchable and transparent metal nanowire heater for wearable electronics applications. Adv Mater 27(32):4744–4751

    Article  CAS  PubMed  Google Scholar 

  • Hyun WJ et al (2015) High-resolution patterning of graphene by screen printing with a silicon stencil for highly flexible printed electronics. Adv Mater 27(1):109–115

    Article  CAS  PubMed  Google Scholar 

  • Ilanchezhiyan P et al (2015) Highly efficient CNT functionalized cotton fabrics for flexible/wearable heating applications. RSC Adv 5(14):10697–10702

    Article  CAS  Google Scholar 

  • Jang J et al (2017) Rapid production of large-area, transparent and stretchable electrodes using metal nanofibers as wirelessly operated wearable heaters. NPG Asia Mater 9(9):e432

    Article  CAS  Google Scholar 

  • Jia H et al (2015) Integrating ultra-thermal-sensitive fluids into elastomers for multifunctional flexible sensors. Adv Electron Mater 1(3):1500029

    Article  CAS  Google Scholar 

  • Ko Y et al (2017) Flexible supercapacitor electrodes based on real metal-like cellulose papers. Nat Commun 8(1):536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koo H et al (2015) Scalability of carbon-nanotube-based thin film transistors for flexible electronic devices manufactured using an all roll-to-roll gravure printing system. Sci Rep 5:14459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krucińska I et al (2011) The use of carbon nanotubes in textile printing. J Appl Polym Sci 121(1):483–490

    Article  CAS  Google Scholar 

  • Krucinska I et al (2014) Printed textiles with chemical sensor properties. Fibre Text East Euro 22(4):68

    CAS  Google Scholar 

  • Lee J et al (2015a) Conductive fiber-based ultrasensitive textile pressure sensor for wearable electronics. Adv Mater 27(15):2433–2439

    Article  CAS  PubMed  Google Scholar 

  • Lee W et al (2015b) A fully roll-to-roll gravure-printed carbon nanotube-based active matrix for multi-touch sensors. Sci Rep 5:17707

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li Y-Q et al (2017) Flexible wire-shaped strain sensor from cotton thread for human health and motion detection. Sci Rep 7:45013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li X et al (2018) Wearable strain sensing textile based on one-dimensional stretchable and weavable yarn sensors. Nano Res 11(11):5799

    Article  CAS  Google Scholar 

  • Metters JP et al (2011) New directions in screen printed electroanalytical sensors: an overview of recent developments. Analyst 136(6):1067–1076

    Article  CAS  PubMed  Google Scholar 

  • Nuramdhani I et al (2018) Electrochemical impedance analysis of a PEDOT: PSS-based textile energy storage device. Materials 11(1):48

    Article  CAS  Google Scholar 

  • Park JJ et al (2015) Highly stretchable and wearable graphene strain sensors with controllable sensitivity for human motion monitoring. ACS Appl Mater Interfaces 7(11):6317–6324

    Article  CAS  PubMed  Google Scholar 

  • Shen C et al (2017) Wearable woven supercapacitor fabrics with high energy density and load-bearing capability. Sci Rep 7(1):14324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shengbo S et al (2018) Highly sensitive wearable strain sensor based on silver nanowires and nanoparticles. Nanotechnology 29(25):255202

    Article  CAS  PubMed  Google Scholar 

  • Song JW, Kim YS, Yoon YH, Lee ES, Han C-S, Cho Y, Kim D, Kim J, Lee N, Ko YG, Jung HT, Kim SH (2009) The production of transparent carbon nanotube field emitters using inkjet printing. Phys E Low Dimens Syst Nanostruct 42(8):1513–1516

    Article  CAS  Google Scholar 

  • Wang L-L et al (2009) Electromagnetic interference shielding effectiveness of carbon-based materials prepared by screen printing. Carbon 47(8):1905–1910

    Article  CAS  Google Scholar 

  • Wang R et al (2010) Microstructures and electrical conductance of silver nanocrystalline thin films on flexible polymer substrates. Surf Coat Technol 204(8):1206–1210

    Article  CAS  Google Scholar 

  • Yang M et al (2018) Conductive cotton fabrics for motion sensing and heating applications. Polymers 10(6):568

    Article  CAS  PubMed Central  Google Scholar 

  • Zahid M et al (2017) Strain-responsive mercerized conductive cotton fabrics based on PEDOT: PSS/graphene. Mater Des 135:213–222

    Article  CAS  Google Scholar 

  • Zhang M et al (2017) Weft-knitted fabric for a highly stretchable and low-voltage wearable heater. Adv Electron Mater 3(9):1700193

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the National Natural Science Foundation of China (NSFC 51503164 and 51403162).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guangming Cai or Xin Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1237 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sadi, M.S., Yang, M., Luo, L. et al. Direct screen printing of single-faced conductive cotton fabrics for strain sensing, electrical heating and color changing. Cellulose 26, 6179–6188 (2019). https://doi.org/10.1007/s10570-019-02526-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-019-02526-6

Keywords

Navigation