Skip to main content
Log in

Preparation of high-aspect-ratio cellulose nanocrystals by solvothermal synthesis followed by mechanical exfoliation

  • Original Research
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

We report a green chemical–physical approach for extracting cellulose nanocrystals (CNCs), using a two-step collaborative process combining solvothermal pretreatment and mechanical exfoliation. This method avoids the use of large volumes of sulfuric acid. The structure, morphology, size distribution, zeta potential, crystallinity, and thermal stability of the CNCs are characterized by Fourier-transform infrared spectroscopy, X-ray diffraction, thermogravimetric analysis, and scanning electron, transmission electron and atomic force microscopies. The yield and properties of the obtained CNCs are investigated and compared with those obtained by the conventional acid hydrolysis method. A yield of 72.17 ± 2.00% was obtained, which was significantly higher than that of 30–35% for the traditional sulfuric acid hydrolysis method. CNCs are obtained with an aspect ratio of 25 times, average length of 280 nm, and average width of 11 nm. The CNCs obtained by the two-step process exhibit better thermal stability than those obtained by the conventional acid hydrolysis. The combination of solvothermal pretreatment and mechanical exfoliation is an efficient and promising method for the large-scale production of CNCs for industrial application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aparna R, Sivakumar N, Balakrishnan A, Sreekumar Nair A, Nair SV, Subramanian K (2013) An effective route to produce few-layer graphene using combinatorial ball milling and strong aqueous exfoliants. J Renew Sustain Energy 5:033123

    Article  CAS  Google Scholar 

  • Bossa N, Carpenter AW, Kumar N, Lannoy CF, Wiesner M (2017) Cellulose nanocrystal zero-valent iron nanocomposites for groundwater remediation. Environ Sci Nano 4:1294–1303

    Article  CAS  Google Scholar 

  • Chen L, Wang Q, Hirth K, Baez C, Agarwal UP, Zhu J (2015) Tailoring the yield and characteristics of wood cellulose nanocrystals (CNC) using concentrated acid hydrolysis. Cellulose 22:1753–1762

    Article  CAS  Google Scholar 

  • Deepa B, Abraham E, Cordeiro N, Mozetic M, Mathew AP, Oksman K, Faria M, Thomas S, Pothan LA (2015) Utilization of various lignocellulosic biomass for the production of nanocellulose: a comparative study. Cellulose 22:1075–1090

    Article  CAS  Google Scholar 

  • Del Rio-Castillo AE, Merino C, Díez-Barra E, Vázquez E (2014) Selective suspension of single layer graphene mechanochemically exfoliated from carbon nanofibres. Nano Res 7:963–972

    Article  CAS  Google Scholar 

  • Driscoll M, Stipanovic A, Winter W, Cheng K, Manning M, Spiese J, Galloway RA, Cleland MR (2009) Electron beam irradiation of cellulose. Radiat Phys Chem 78:539–542

    Article  CAS  Google Scholar 

  • Filson PB, Dawson-Andoh BE (2009) Sono-chemical preparation of cellulose nanocrystals from lignocellulose derived materials. Bioresour Technol 100:2259–2264

    Article  CAS  PubMed  Google Scholar 

  • Frka-Petesic B, Radavidson H, Jean B, Heux L (2017) Dynamically controlled iridescence of cholesteric cellulose nanocrystal suspensions using electric fields. Adv Mater 29:1606208

    Article  CAS  Google Scholar 

  • Gao Y, Wang X, Yang H, Chen H (2012) Characterization of products from hydrothermal treatments of cellulose. Energy 42:457–465

    Article  CAS  Google Scholar 

  • Gencer A, Schutz C, Thielemans W (2017) Influence of the particle concentration and marangoni flow on the formation of cellulose nanocrystal films. Langmuir 33:228–234

    Article  CAS  PubMed  Google Scholar 

  • Guidetti G, Atifi S, Vignolini S, Hamad WY (2016) Flexible photonic cellulose nanocrystal films. Adv Mater 28:10042–10047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu L, Luo Y, Cai B, Li J, Tong D, Hu C (2014) The degradation of the lignin in Phyllostachys heterocycla cv. pubescens in an ethanol solvothermal system. Green Chem 16:3107–3116

    Article  CAS  Google Scholar 

  • Jeon IY, Shin YR, Sohn GJ, Choi HJ, Bae SY, Mahmood J, Jung SM, Seo JM, Kim MJ, Wook Chang D, Dai L, Baek JB (2012) Edge-carboxylated graphene nanosheets via ball milling. Proc Natl Acad Sci USA 109(15):5588–5593

    Article  PubMed  Google Scholar 

  • Jonoobi M, Oladi R, Davoudpour Y, Oksman K, Dufresne A, Hamzeh Y, Davoodi R (2015) Different preparation methods and properties of nanostructured cellulose from various natural resources and residues: a review. Cellulose 22:935–969

    Article  CAS  Google Scholar 

  • Kaushik M, Moores A (2016) Nanocelluloses as versatile supports for metal nanoparticles and their applications in catalysis. Green Chem 18:622–637

    Article  CAS  Google Scholar 

  • Lee WJ, Clancy AJ, Kontturi E, Bismarck A, Shaffer MS (2016) Strong and stiff: high-performance cellulose nanocrystal/poly(vinyl alcohol) composite fibers. ACS Appl Mater Interfaces 8:31500–31504

    Article  CAS  PubMed  Google Scholar 

  • Li R, Fei J, Cai Y, Li Y, Feng J, Yao J (2009) Cellulose whiskers extracted from mulberry: a novel biomass production. Carbohydr Polym 76:94–99

    Article  CAS  Google Scholar 

  • Li Y, Liu Y, Chen W, Wang Q, Liu Y, Li J, Yu H (2016) Facile extraction of cellulose nanocrystals from wood using ethanol and peroxide solvothermal pretreatment followed by ultrasonic nanofibrillation. Green Chem 18:1010–1018

    Article  CAS  Google Scholar 

  • Lu Z, Fan L, Zheng H, Lu Q, Liao Y, Huang B (2013) Preparation, characterization and optimization of nanocellulose whiskers by simultaneously ultrasonic wave and microwave assisted. Bioresour Technol 146:82–88

    Article  CAS  PubMed  Google Scholar 

  • Lyu H, Gao B, He F, Ding C, Tang J, Crittenden JC (2017) Ball-milled carbon nanomaterials for energy and environmental applications. ACS Sustain Chem Eng 5:9568–9585

    Article  CAS  Google Scholar 

  • Nascimento DM, Almeida JS, Dias AF, Figueirêdo MCB, Morais JPS, Feitosa JPA, Rosa MDF (2014) A novel green approach for the preparation of cellulose nanowhiskers from white coir. Carbohydr Polym 110:456–463

    Article  CAS  PubMed  Google Scholar 

  • Novo LP, Bras J, García A, Belgacem N, Curvelo AA (2015) Subcritical water: a method for green production of cellulose nanocrystals. ACS Sustain Chem Eng 3:2839–2846

    Article  CAS  Google Scholar 

  • Shao L, Sun H, Miao L, Chen X, Han M, Sun J, Liu S, Li L, Cheng F, Chen J (2018) Facile preparation of NH2-functionalized black phosphorene for the electrocatalytic hydrogen evolution reaction. J Mater Chem A 6:2494–2499

    Article  CAS  Google Scholar 

  • Soares O, Rocha RP, Gonçalves A, Figueiredo JL, Órfão J, Pereira MFR (2015) Easy method to prepare N-doped carbon nanotubes by ball milling. Carbon 91:114–121

    Article  CAS  Google Scholar 

  • Tang L, Huang B, Ou W, Chen X, Chen Y (2011) Manufacture of cellulose nanocrystals by cation exchange resin-catalyzed hydrolysis of cellulose. Bioresour Technol 102:10973–10977

    Article  CAS  PubMed  Google Scholar 

  • Tong WY, Abdullah AYK, Rozman NAS, Bin Wahid MIA, Hossain MS, Ring LC, Lazim Y, Tan W (2018) Antimicrobial wound dressing film utilizing cellulose nanocrystal as drug delivery system for curcumin. Cellulose 25:631–638

    Article  CAS  Google Scholar 

  • Xu J, Jeon IY, Seo JM, Dou S, Dai L, Baek JB (2014a) Edge-selectively halogenated graphene nanoplatelets (XGnPs, X = Cl, Br, or I) prepared by ball-milling and used as anode materials for lithium-ion batteries. Adv Mater 26(43):7317–7323

    Article  CAS  PubMed  Google Scholar 

  • Xu J, Shui J, Wang J, Wang M, Liu H, Dou SX, Jeon IY, Seo JM, Baek J, Dai L (2014b) Sulfur–graphene nanostructured cathodes via ball-milling for high-performance lithium–sulfur batteries. ACS Nano 8:10920–10930

    Article  CAS  PubMed  Google Scholar 

  • Yang X, Cranston ED (2014) Chemically cross-linked cellulose nanocrystal aerogels with shape recovery and superabsorbent properties. Chem Mater 26:6016–6025

    Article  CAS  Google Scholar 

  • Yi M, Shen Z (2015) A review on mechanical exfoliation for the scalable production of graphene. J Mater Chem A 3:11700–11715

    Article  CAS  Google Scholar 

  • Yu H, Qin Z, Liu L, Yang X, Zhou Y, Yao J (2013a) Comparison of the reinforcing effects for cellulose nanocrystals obtained by sulfuric and hydrochloric acid hydrolysis on the mechanical and thermal properties of bacterial polyester. Compos Sci Technol 87:22–28

    Article  CAS  Google Scholar 

  • Yu H, Qin Z, Liang B, Liu N, Zhou Z, Chen L (2013b) Facile extraction of thermally stable cellulose nanocrystals with a high yield of 93% through hydrochloric acid hydrolysis under hydrothermal conditions. J Mater Chem A 1:3938–3944

    Article  CAS  Google Scholar 

  • Yu H, Sun B, Zhang D, Chen G, Yang X, Yao J (2014) Reinforcement of biodegradable poly (3-hydroxybutyrate-co-3-hydroxyvalerate) with cellulose nanocrystal/silver nanohybrids as bifunctional nanofillers. J Mater Chem B 2:8479–8489

    Article  CAS  Google Scholar 

  • Zhang Z, Sun J, Lai C, Wang Q, Hu C (2017) High-yield ball-milling synthesis of extremely concentrated and highly conductive graphene nanoplatelet inks for rapid surface coating of diverse substrates. Carbon 120:411–418

    Article  CAS  Google Scholar 

  • Zhou S, Liu P, Wang M, Zhao H, Yang J, Xu F (2016) Sustainable, reusable, and superhydrophobic aerogels from microfibrillated cellulose for highly effective oil/water separation. ACS Sustain Chem Eng 4:6409–6416

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by Shanghai Natural Science Foundation (Grant No. 18ZR1400800), the Fundamental Research Funds for the Central Universities (No. 2232019D-3-19) and the Initial Research Funds for Young Teachers of Donghua University to Aiqin Gao. We thank Aidan G. Young, PhD, from Liwen Bianji, Edanz Group China (www.liwenbianji.cn/ac), for editing the English text of a draft of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kongliang Xie.

Ethics declarations

Conflict of interest

There are no conflicts of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, A., Chen, H., Hou, A. et al. Preparation of high-aspect-ratio cellulose nanocrystals by solvothermal synthesis followed by mechanical exfoliation. Cellulose 26, 5937–5945 (2019). https://doi.org/10.1007/s10570-019-02507-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-019-02507-9

Keywords

Navigation