Skip to main content
Log in

An eco-friendly intumescent flame retardant with high efficiency and durability for cotton fabric

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

The eco-friendly flame-retardant I-type ammonium polyphosphate (I-type APP) has poor water solubility and poor durability when applied to textiles, limiting its application in the textile industry. In this study, we resolve I-type APP solubility in water and then improve its durability for cotton fabric. The resolvable APP was grafted onto cotton fabrics by the P–O–C bonds. The limiting oxygen index (LOI) values of the 30% APP-treated cotton fabric was 50.1%; after 50 laundering cycles (LCs), the LOI values still retained 28.5%. No after-flame and after-glow were observed in the vertical burning test. These experimental results imply that the APP-treated cotton fabrics have high flame retardancy and excellent durability. Scanning electron microscopy showed that the surfaces of cotton fabric before and after treatment were similar and no material was deposited on the surface. X-ray diffraction analysis demonstrated that the crystal structures of the APP-treated cotton were almost unaffected. The thermogravimetric (TG) and TG-infrared (IR) analysis indicated that the treated cotton produced phosphoric acid or polyphosphoric acid during thermal decomposition to promote the dehydration and carbonization of cellulose in favor of char form. The results of the microcalorimetry indicated that the total heat release and the peak of the heat release rate of the treated cotton were significantly lower than those of the control cotton. The whiteness indexes, tensile strengths and bending lengths of the APP-treated cotton fabric showed that it still maintained good physical properties.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Alongi J, Ciobanu M, Malucelli G (2011) Novel flame retardant finishing systems for cotton fabrics based on phosphorus-containing compounds and silica derived from sol–gel processes. Carbohyd Polym 85:599–608

    Article  CAS  Google Scholar 

  • Cao XL, Yang YY, Luo H, Cai XF (2017) High efficiency intumescent flame retardancy between Hexakis (4-nitrophenoxy) cyclotriphosphazene and ammonium polyphosphate on ABS. Polym Degrad Stabil 143:259–265

    Article  CAS  Google Scholar 

  • Carosio F, Alongi J (2015) Few durable layers suppress cotton combustion due to the joint combination of layer by layer assembly and UV-curing. RSC Adv 5:71482–71490

    Article  CAS  Google Scholar 

  • Chen XL, Ma CY, Jiao CM (2016) Synergistic effects between iron-graphene and ammonium polyphosphate in flame-retardant thermoplastic polyurethane. J Therm Anal Calorim 126:633–642

    Article  CAS  Google Scholar 

  • Chen XL, Wang WD, Jiao CM (2017) A recycled environmental friendly flame retardant by modifying para-aramid fiber with phosphorus acid for thermoplastic polyurethane elastomer. J Hazard Mater 331:257–264

    Article  CAS  PubMed  Google Scholar 

  • Ding HY, Huang K, Li SH, Xu LN, Xia JL, Li M (2017a) Synthesis of a novel phosphorus and nitrogen-containing bio-based polyol and its application in flame retardant polyurethane foam. J Anal Appl Pyrol 128:102–113

    Article  CAS  Google Scholar 

  • Ding HY, Huang K, Li SH, Xu LN, Xia JL, Li M (2017b) Flame retardancy and thermal degradation of halogen-free flame-retardant biobased polyurethane composites based on ammonium polyphosphate and aluminium hypophosphite. Polym Test 62:325–334

    Article  CAS  Google Scholar 

  • Dong CH, He PS, Lu Z, Wang SG, Sui SY, Liu J, Zhang L, Zhu P (2017) Preparation and properties of cotton fabrics treated with a novel antimicrobial and flame retardant containing triazine and phosphorus components. J Therm Anal Calorim 87(11):1–9

    Google Scholar 

  • Duan DL, Ruan R, Wang YP, Liu YH, Dai LL, Zhao YF, Zhou Y, Wu QH (2018) Microwave-assisted acid pretreatment of alkali lignin: effect on characteristics and pyrolysis behavior. Bioresource Technol 251:57–62

    Article  CAS  Google Scholar 

  • Feng YJ, Zhou Y, Li DK, He S, Zhang FX, Zhang GX (2017) A plant-based reactive ammonium phytate for use as a.flame-retardant for cotton fabric. Carbohyd Polym 175:636–644

    Article  CAS  Google Scholar 

  • Feng YZ, He CG, Wen YF, Ye YS, Zhou XP, Xie XL, Mai YM (2018) Superior flame retardancy and smoke suppression of epoxy-based composites with phosphorus/nitrogen co-doped graphene. J Hazard Mater 346:140–151

    Article  CAS  PubMed  Google Scholar 

  • Gao Y, Morisada Y, Fujii H, Liao J (2018) Dissimilar friction stir lap welding of magnesium to aluminum using plasma electrolytic oxidation interlayer. Mater Sci Eng, A 711:109–118

    Article  CAS  Google Scholar 

  • Gu LM, Ge Z, Huang MH, Luo YJ (2015) Halogen-free flame-retardant waterborne polyurethane with a novel cyclic structure of phosphorus–nitrogen synergistic flame retardant. J Appl Polym Sci 132(3):41288

    Article  CAS  Google Scholar 

  • Han YY, Zhang XX, Wu XD, Lu CH (2015) Flame retardant, heat insulating cellulose aerogels from waste cotton fabrics by in situ formation of magnesium hydroxide nanoparticles in cellulose gel nanostructures. ACS Sustainable Chem Eng 3(8):1853–1859

    Article  CAS  Google Scholar 

  • Jarosiewicz M, Duchnowicz P, Włuka A, Bukowska B (2017) Evaluation of the effect of brominated flame retardants on hemoglobin oxidation and hemolysis in human erythrocytes. Food Chem Toxicol 109:264–271

    Article  CAS  PubMed  Google Scholar 

  • Jiang Y, Zhou WL, Jiang MJ, Liu PQ, Xu JJ (2017) Flame retardant study of formalized polyvinyl alcohol fiber coated with melamine formaldehyde resins and the synergistic effect of copper ions. Polym Degrad Stabil 144:331–343

    Article  CAS  Google Scholar 

  • Jing J, Zhang Y, Tang XL, Zhou Y, Li XN, Kandola BK (2017) Layer by layer deposition of polyethylenimine and bio based polyphosphate on ammonium polyphosphate: a novel hybrid for simultaneously improving the flame retardancy and toughness of polylactic acid. Polymer 108:361–371

    Article  CAS  Google Scholar 

  • Kim SJ, Jang J (2017) Synergistic UV-curable flame-retardant finish of cotton using comonomers of vinylphosphonic acid and acrylamide. Fiber Polym 18:2328–2333

    Article  CAS  Google Scholar 

  • Kim NL, Lin RJT, Bhattacharyya D (2015) Effects of wool fibers, ammonium polyphosphate and polymer viscosity on the flammability and mechanical performance of PP/wool composites. Polym Degrad Stabil 119:167–177

    Article  CAS  Google Scholar 

  • Konig A, Kroke E (2012) Flame retardancy working mechanism of methyl-DOPO and MPPP in flexible polyurethane foam. Fire Mater 36:1–15

    Article  CAS  Google Scholar 

  • Li LP, Hu HD, Hu HQ (2014) Effect of ammonium polyphosphate modified with 3-(methylacryloxyl) propyltrimethoxy silane on the flammability and thermal degradation of pine-needles. Polym Polym Compos 22(9):837–842

    Article  CAS  Google Scholar 

  • Li ZY, Jia ZG, Ni T, Li SB (2017) Green and facile synthesis of fibrous Ag/cotton composites and their catalytic properties for 4-nitrophenol reduction. Appl Surf Sci 426:160–168

    Article  CAS  Google Scholar 

  • Naik AD, Fontaine G, Bellayer S, Bourbigot S (2015) Salen based Schiff bases to flame retard thermoplastic polyurethane mimicking operational strategies of thermosetting resin. RSC Adv 5:48224–48235

    Article  CAS  Google Scholar 

  • Neugebauer F, Dreyer A, Lohmann N, Koschorreck J (2017) Determination of halogenated flame retardants by GC-API-MS/MS and GC-EI-MS: a multi-compound multi-matrix method. Anal Bioanal Chem 410(4):1375–1387

    Article  CAS  PubMed  Google Scholar 

  • Parsa MR, Chaffee AL (2018) The effect of densification with NaOH on brown coal thermal oxidation behaviour and structure. Fuel 216:548–558

    Article  CAS  Google Scholar 

  • Pethsangave DA, Khose RV, Wadekar PH, Some S (2017) Deep eutectic solvent functionalized graphene composite as an extremely high potency flame retardant. ASC Appl Mater Interfaces 9:35319–35324

    Article  CAS  Google Scholar 

  • Poma G, Malysheva SV, Goscinny S, Malarvannan G, Voorspoels S, Covaci A, Loco JV (2018) Occurrence of selected halogenated flame retardants in Belgian foodstuff. Chemosphere 194:256–265

    Article  CAS  PubMed  Google Scholar 

  • Price D, Horrucks AR, Akalin M, Faroq AA (1997) Influence of flame retardants on the mechanism of pyrolysis of cotton (celluIose) fabrics in air. J Anal Appl Pyrol 40–41:511–524

    Article  Google Scholar 

  • Qin ZL, Li DH, Lan YH, Li Q, Yang RJ (2015) Ammonium polyphosphate and silicon-containing cyclotriphosphazene: synergistic effect in flame-retarded polypropylene. Ind Eng Chem Res 54(43):10707–10713

    Article  CAS  Google Scholar 

  • Qiu SL, Ma C, Wang X, Zhou X, Feng XM, Yuen RKK, Hu Y (2018) Melamine-containing polyphosphazene wrapped ammonium polyphosphate: a novel multifunctional organic-inorganic hybrid flame retardant. J Hazard Mater 344:839–848

    Article  CAS  PubMed  Google Scholar 

  • Raslan HA, Elnaggar MY, Fathy ES (2017) Flame-retardancy and physico-thermomechanical properties of irradiated ethylene propylene diene monomer inorganic composites. J Vinyl Addit Techn. https://doi.org/10.1002/vnl.21615

    Article  Google Scholar 

  • Ribeiro SPD, Estevao LRD, Novak C, Nascimento RSV (2011) Clays basal spacings effect on fire retardancy of polymers by TG/DTA. J Therm Anal Calorim 106:535–539

    Article  CAS  Google Scholar 

  • Seki Y (2018) Conductive cotton fabrics coated with Myristic acid/zinc oxide nanoparticles. Polym Plast Technol Eng 57(8):766–774

    Article  CAS  Google Scholar 

  • Strover LT, Malmstrom J, Stubbing LA, Brimble MA, Travas-Sejdic J (2016) Electrochemically-controlled grafting of hydrophilic brushes from conducting polymer substrates. Electrochim Acta 188:57–70

    Article  CAS  Google Scholar 

  • Sun LS, Qu YT, Li SX (2013) Co-microencapsulate of ammonium polyphosphate and pentaerythritol in intumescent flame-retardant coatings. J Therm Anal Calorim 111:1099–1106

    Article  CAS  Google Scholar 

  • Tang QB, Wang BB, Shi YQ, Song L, Hu Y (2013) Microencapsulated ammonium polyphosphate with glycidyl methacrylate shell: application to flame retardant epoxy resin. Ind Eng Chem Res 52:5640–5647

    Article  CAS  Google Scholar 

  • Tian XY, He W, Cui JJ, Zhang DX, Zhou WJ, Yan SP, Sun XN, Han XX, Han SS, Yue YZ (2010) Mesoporous zirconium phosphate from yeast biotemplate. J Colloid Interf Sci 343(1):344–349

    Article  CAS  Google Scholar 

  • Wang N, Mi L, Wu YX, Wang XZ, Fang QH (2013) Enhanced flame retardancy of natural rubber composite with addition of microencapsulated ammonium polyphosphate and MCM-41 fillers. Fire Safety J 62:281–288

    Article  CAS  Google Scholar 

  • Wang W, Zhang SF, Wang F, Yan YT, Li JZ, Zhang W (2016) Effect of microencapsulated ammonium polyphosphate on flame retardancy and mechanical properties of wood flour/polypropylene composites. Polym Composite 37(3):666–673

    Article  CAS  Google Scholar 

  • Wang F, Zhang P, Mou YR, Kang M, Liu M, Song LX, Lu A, Rong JZ (2017) Synthesis of the polyethylene glycol solid-solid phase change materials with a functionalized graphene oxide for thermal energy storage. Polym Test 63:494–504

    Article  CAS  Google Scholar 

  • Xu L, Jiang Y, Qiu R (2018) Parametric study and global sensitivity analysis for co-pyrolysis of rape straw and waste tire via variance-based decomposition. Bioresource Technol 247:545–552

    Article  CAS  Google Scholar 

  • Yang SS, Chen ZB (2018) The study on aging and degradation mechanism of ammonium polyphosphate in artificial accelerated aging. Procedia Engineering 211:906–910

    Article  CAS  Google Scholar 

  • Yang CQ, He QL, Lyon RE, Hu Y (2010) Investigation of the flammability of different textile fabrics using micro-scale combustion calorimetry. Polym Degrad Stabil 95:108–115

    Article  CAS  Google Scholar 

  • Yang ZY, Wang XW, Lei DP, Fei B, Xin JH (2012) A durable flame retardant for cellulosic fabrics. Polym Degrad Stabil 97:2467–2472

    Article  CAS  Google Scholar 

  • Zhang DQ, Williams BL, Shrestha SB, Nasir Z, Becher EM, Lofink BJ, Santos VH, Patel H, Peng XH, Sun LY (2017) Flame retardant and hydrophobic coatings on cotton fabrics via sol-gel and self-assembly techniques. J Colloid Interf Sci 505:892–899

    Article  CAS  Google Scholar 

  • Zhao XM, Guerrero FR, Llorca J, Wang DY (2016) New superefficiently flame-retardant bioplastic poly(lactic acid): flammability, thermal decomposition behavior, and tensile properties. ACS Sustain Chem Eng 4:202–209

    Article  CAS  Google Scholar 

  • Zhou QQ, Chen GQ, Xing TL (2018) Facile construction of robust superhydrophobic tea polyphenol/Fe@cotton fabric for self-cleaning and efficient oil–water separation. Cellulose 25(2):1513–1525

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The research was supported by Chongqing postgraduate education and teaching reform major Project (NO: yjg152022), and Chongqing natural science foundation of key projects in China (Grant No: CSTC 2014 yy kfB50002).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guangxian Zhang or Fengxiu Zhang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 2868 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, Y., Jia, Y., Zhang, G. et al. An eco-friendly intumescent flame retardant with high efficiency and durability for cotton fabric. Cellulose 25, 5389–5404 (2018). https://doi.org/10.1007/s10570-018-1930-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-018-1930-0

Keywords

Navigation