Skip to main content
Log in

Improvement of thermal conductivity of composite film composed of cellulose nanofiber and nanodiamond by optimizing process parameters

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

The in-plane thermal conductivity of cellulose nanofiber (CNF) composite film densely covered with nanodiamond (ND) particles has been improved by using the wet-rotating disc milling (WRDM) process and optimizing the compositional ratio of ND and CNF. The aspect ratio of CNF fibrils was increased by 42% using the WRDM. Furthermore, the in-plane thermal conductivities of CNF and ND/CNF films composed of WRDM-assisted CNF fibrils were improved with the increase of the aspect ratio of CNF fibrils. In addition, the mass ratio of ND to CNF and the in-plane thermal conductivity of the ND/CNF composite film were enhanced by using the WRDM-assisted ND suspensions owing to the improvement of dispersibility of ND particles. Consequently, the in-plane thermal conductivity of the ND/CNF film increased by 82% from 2.67 to 4.85 W/m K with the increase of the aspect ratio of CNF fibrils, thus improving the dispersibility of ND particles and optimizing the compositional ratio of ND and CNF. The dense adsorption of ND particles on the surface of CNF fibrils with high aspect ratio led to the improvement of the in-plane thermal conductivity of the composite film.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Agari Y, Ueda A, Nagai S (1993) Thermal conductivity of a polymer composite. J Appl Polym Sci 49:1625–1634

    Article  CAS  Google Scholar 

  • Berman R, Klemens PG (1978) Thermal conduction in solids. Phys Today 31:56

    Article  Google Scholar 

  • Cai N, Hou D, Luo X, Han C, Fu J, Zeng H, Yu F (2016a) Enhancing mechanical properties of polyelectrolyte complex nanofibers with graphene oxide nanofillers pretreated by polycation. Compos Sci Technol 135:128–136

    Article  CAS  Google Scholar 

  • Cai N, Li C, Luo X, Xue Y, Shen L, Yu F (2016b) A strategy for improving mechanical properties of composite nanofibers through surface functionalization of fillers with hyperbranched polyglycerol. J Mater Sci 51:797–808

    Article  CAS  Google Scholar 

  • Chen W et al (2014) Comparative study of aerogels obtained from differently prepared nanocellulose fibers. ChemSusChem 7:154–161

    Article  CAS  PubMed  Google Scholar 

  • Gruen DM (1999) Nanocrystalline diamond films. Annu Rev Mater Sci 29:211–259

    Article  CAS  Google Scholar 

  • Ishizaki T, Nagano H (2015) Measurement of three-dimensional anisotropic thermal diffusivities for carbon fiber-reinforced plastics using lock-in thermography. Int J Thermophys 36:2577–2589. https://doi.org/10.1007/s10765-014-1755-5

    Article  CAS  Google Scholar 

  • Jakob H, Fengel D, Tschegg S, Fratzl P (1995) The elementary cellulose fibril in Picea abies: comparison of transmission electron microscopy, small-angle X-ray scattering, and wide-angle X-ray scattering results. Macromolecules 28:8782–8787

    Article  CAS  Google Scholar 

  • Kobayashi Y, Saito T, Isogai A (2014) Aerogels with 3D ordered nanofiber skeletons of liquid-crystalline nanocellulose derivatives as tough and transparent insulators. Angew Chem 126:10562–10565

    Article  Google Scholar 

  • Lee G-W, Lee JI, Lee S-S, Park M, Kim J (2005) Comparisons of thermal properties between inorganic filler and acid-treated multiwall nanotube/polymer composites. J Mater Sci 40:1259–1263

    Article  CAS  Google Scholar 

  • Lee ES, Lee SM, Shanefield DJ, Cannon WR (2008) Enhanced thermal conductivity of polymer matrix composite via high solids loading of aluminum nitride in epoxy resin. J Am Ceram Soc 91:1169–1174

    Article  CAS  Google Scholar 

  • Martinez D et al (2001) Characterizing the mobility of papermaking fibres during sedimentation. In: Proceedings of the transactions of 12th fundamental research symposium, Oxford, pp 225–254

  • Mochalin VN, Shenderova O, Ho D, Gogotsi Y (2012) The properties and applications of nanodiamonds. Nat Nanotechnol 7:11

    Article  CAS  Google Scholar 

  • Morishita T, Okamoto H (2016) Facile exfoliation and noncovalent superacid functionalization of boron nitride nanosheets and their use for highly thermally conductive and electrically insulating polymer nanocomposites. ACS Appl Mater Interfaces 8:27064–27073. https://doi.org/10.1021/acsami.6b08404

    Article  CAS  PubMed  Google Scholar 

  • Neitzel I, Mochalin V, Knoke I, Palmese GR, Gogotsi Y (2011) Mechanical properties of epoxy composites with high contents of nanodiamond. Compos Sci Technol 71:710–716

    Article  CAS  Google Scholar 

  • Nishino T, Takano K, Nakamae K (1995) Elastic modulus of the crystalline regions of cellulose polymorphs. J Polym Sci Part B Polym Phys 33:1647–1651

    Article  CAS  Google Scholar 

  • Omura N, Hotta Y, Sato K, Kinemuchi Y, Kume S, Watari K (2006) Fabrication of stable Al2O3 slurries and dense green bodies using wet jet milling. J Am Ceram Soc 89:2738–2743. https://doi.org/10.1111/j.1551-2916.2006.01142.x

    Article  CAS  Google Scholar 

  • Sato K et al (2010) Thermally conductive composite films of hexagonal boron nitride and polyimide with affinity-enhanced interfaces. J Mater Chem 20:2749–2752. https://doi.org/10.1039/b924997d

    Article  CAS  Google Scholar 

  • Sato K, Ijuin A, Hotta Y (2015) Thermal conductivity enhancement of alumina/polyamide composites via interfacial modification. Ceram Int 41:10314–10318

    Article  CAS  Google Scholar 

  • Sato K, Tominaga Y, Hotta Y, Shibuya H, Sugie M, Saruyama T (2018) Cellulose nanofiber/nanodiamond composite films: thermal conductivity enhancement achieved by a tuned nanostructure. Adv Powder Technol 29(4):972–976

    Article  CAS  Google Scholar 

  • Saxena IM, Brown RM Jr (2005) Cellulose biosynthesis: current views and evolving concepts. Ann Bot 96:9–21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shimazaki Y, Miyazaki Y, Takezawa Y, Nogi M, Abe K, Ifuku S, Yano H (2007) Excellent thermal conductivity of transparent cellulose nanofiber/epoxy resin nanocomposites. Biomacromolecules 8:2976–2978

    Article  CAS  PubMed  Google Scholar 

  • Siró I, Plackett D (2010) Microfibrillated cellulose and new nanocomposite materials: a review. Cellulose 17:459–494

    Article  CAS  Google Scholar 

  • Tominaga Y, Sato K, Yan X, Shimamoto D, Imai Y, Hotta Y (2015) Exfoliation of hexagonal boron nitride using wet-rotating disc milling. J Ceram Soc Japan 123:512–515. https://doi.org/10.2109/jcersj2.123.512

    Article  CAS  Google Scholar 

  • Uetani K, Okada T, Oyama HT (2015) Crystallite size effect on thermal conductive properties of nonwoven nanocellulose sheets. Biomacromolecules 16:2220–2227

    Article  CAS  PubMed  Google Scholar 

  • Yano H, Sugiyama J, Nakagaito AN, Nogi M, Matsuura T, Hikita M, Handa K (2005) Optically transparent composites reinforced with networks of bacterial nanofibers. Adv Mater 17:153–155

    Article  CAS  Google Scholar 

  • Zhang L, Batchelor W, Varanasi S, Tsuzuki T, Wang X (2012) Effect of cellulose nanofiber dimensions on sheet forming through filtration. Cellulose 19:561–574

    Article  CAS  Google Scholar 

  • Zhang Y, Choi JR, Park S-J (2017) Thermal conductivity and thermo-physical properties of nanodiamond-attached exfoliated hexagonal boron nitride/epoxy nanocomposites for microelectronics. Compos Part A Appl S 101:227–236

    Article  CAS  Google Scholar 

  • Zhang Y, Rhee KY, Hui D, Park S-J (2018) A critical review of nanodiamond based nanocomposites: Synthesis, properties and applications. Compos Part B Eng 143:19–27

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuichi Tominaga.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tominaga, Y., Sato, K., Hotta, Y. et al. Improvement of thermal conductivity of composite film composed of cellulose nanofiber and nanodiamond by optimizing process parameters. Cellulose 25, 3973–3983 (2018). https://doi.org/10.1007/s10570-018-1869-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-018-1869-1

Keywords

Navigation