Skip to main content
Log in

Carboxymethylcellulose from bleached organosolv fibers of Eucalyptus nitens: synthesis and physicochemical characterization

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

The objective of the present study was to synthesize sodium carboxymethylcellulose from Eucalyptus nitens cellulose. The cellulose extraction was carried out in three stages. In the first stage, E. nitens wood was fractionated using an organosolv pretreatment (methanol–water 50% v/v, 45 min at 200 °C) followed by an alkaline extraction (NaOH, 1.5 M). Finally, the organosolv pulp was bleached using NaClO2 (1.3% w/v, pH 3.8). The bleached cellulose obtained was converted to sodium carboxymethylcellulose (NaCMC) by an etherification reaction in isopropanol medium. NaCMC structure, morphology and properties were researched using FTIR, 1H and 13C NMR spectroscopy, scanning electron microscopy, and thermogravimetric analysis. The results indicate substitution mostly occurred mostly at the C-6 position of 1 → 4 β-d-glucopyranosyl residues of cellulose chains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Agrawal PK (1992) NMR spectroscopy in the structural elucidation of oligosaccharides and glycosides. Phytochemistry 31(10):3307–3330

    Article  CAS  Google Scholar 

  • Arik Kibar EA, Us F (2017) Starch–cellulose ether films: microstructure and water resistance. J Food Process Eng 40:1–8

    Article  Google Scholar 

  • Barba C, Montané D, Rinaudo M, Farriol X (2002) Synthesis and characterization of carboxymethylcelluloses (CMC) from non-wood fibers I. Accessibility of cellulose fibers and CMC synthesis. Cellulose 9:319–326

    Article  CAS  Google Scholar 

  • Biswal DR, Singh RP (2004) Characterization of carboxymethylcellulose and polyacrylamide graft copolymer. Carbohydr Polym 57:379–387

    Article  CAS  Google Scholar 

  • Botello JI, Gilarranz MA, Rodríguez F, Oliet M (1999) Recovery of solvent and by-products from organosolv black liquor. Sep Sci Technol 34:2431–2445

    Article  CAS  Google Scholar 

  • Bozaci E, Akar E, Ozdogan E, Demir A, Altinisik A, Seki Y (2015) Application of carboxymethylcellulose hydrogel based silver nanocomposites on cotton fabrics for antibacterial property. Carbohydr Polym 134:128–135

    Article  CAS  Google Scholar 

  • Candido RG, Goncalves AR (2016) Synthesis of cellulose acetate and carboxymethylcellulose from sugarcane straw. Carbohydr Polym 152:679–686

    Article  CAS  Google Scholar 

  • Capitani D, Porro F, Segre AL (2000) High field NMR analysis of the degree of substitution in carboxymethylcellulose sodium salt. Carbohydr Polym 42:283–286

    Article  CAS  Google Scholar 

  • Chattopadhyay H, Sarkar PB (1946) A new method for the estimation of cellulose. Proc Natl Inst Sci India 12(1):23–46

    CAS  Google Scholar 

  • Dapía S, Tovar CA, Santos V, Parajó JC (2005) Rheological behaviour of carboxymethylcellulose manufactured from TCF-bleached Milox pulps. Food Hydrocoll 19:313–320

    Article  Google Scholar 

  • Das A, Kumar A, Patil NB, Viswanathan C, Ghosh D (2015) Preparation and characterization of silver nanoparticle loaded amorphous hydrogel of carboxymethylcellulose for infected wounds. Carbohydr Polym 130:254–261

    Article  CAS  Google Scholar 

  • Donohoe BS, Decker SR, Melvin PT, Himmel ME, Vinzant TB (2008) Visualizing lignin coalescence and migration through maize cell walls following thermochemical pretreatment. Biotechnol Bioeng 101(5):913–925

    Article  CAS  Google Scholar 

  • Fekete T, Borsa J, Takács E, Wojnárovits L (2016) Synthesis of carboxymethylcellulose/acrylic acid hydrogels with superabsorbent properties by radiation-initiated crosslinking. Radiat Phys Chem 124:135–139

    Article  CAS  Google Scholar 

  • Fengel D, Wegener G (1989) Wood: chemistry, ultrastructure, reactions, 2nd edn. Walter de Gruyter, Berlin, pp 482–521

    Google Scholar 

  • Fox SC, Li B, Xu D, Edgar KJ (2011) Regioselective esterification and etherification of cellulose: a review. Biomacromol 12:1956–1972

    Article  CAS  Google Scholar 

  • Franco H, Ferraz A, Milagres AMF, Carvalho W, Freer J, Baeza J, Teixeira R (2012) Alkaline sulfite/anthraquinone pretreatment followed by disk refining of Pinus radiata and Pinus caribaea wood chips for biochemical ethanol production. J Chem Technol Biotechnol 87:651–657

    Article  CAS  Google Scholar 

  • Gysling AJ, Álvarez V, Soto DA, Pardo EJ, Toledo RR, Poblete PA, González PG, Bañados JC (2016) Chilean statistical yearbook of forestry. Statistical bulletin no. 154

  • Hader RN, Waldeck WF, Smith FW (1952) Carboxymethylcellulose. Ind Eng Chem Res 44(12):2803–2812

    Article  CAS  Google Scholar 

  • Haleem N, Arshad M, Shahid M, Tahir MA (2014) Synthesis of carboxymethyl cellulose from waste of cotton ginning industry. Carbohydr Polym 113:249–255

    Article  CAS  Google Scholar 

  • Heinze T, Koschella A (2005) Carboxymethyl ethers of cellulose and starch: a review. Macromol Symp 223:13–39

    Article  CAS  Google Scholar 

  • Heinze T, Pfeiffer K (1999) Studies on the synthesis and characterization of carboxymethylcellulose. Angew Makromol Chem 266:37–45

    Article  CAS  Google Scholar 

  • Heinze TH, Pfeiffer K, Lazik W (2001) Starch derivatives with high degree of functionalization. III. Influence of reaction conditions and starting materials on molecular structure of carboxymethyl starch. J App Polym Sci 81:2036–2044

    Article  CAS  Google Scholar 

  • Hinterstoisser B, Salmén L (2000) Application of dynamic 2D FTIR to cellulose. Vib Spectrosc 22:111–118

    Article  CAS  Google Scholar 

  • Hu F, Jung S, Ragauskas A (2012) Pseudo-lignin formation and its impact on enzymatic hydrolysis. Bioresour Technol 117:7–12

    Article  CAS  Google Scholar 

  • Hu F, Jung S, Ragauskas A (2013) Impact of pseudolignin versus dilute acid-pretreated lignin on enzymatic hydrolysis of cellulose. ACS Sustain Chem Eng 1:62–65

    Article  CAS  Google Scholar 

  • Hussin MH, Rahim AA, Ibrahim MNM, Brosse N (2013) Physicochemical characterization of alkaline and ethanol organosolv lignins from oil palm (Elaeis guineensis) fronds as phenol substitutes for green material applications. Ind Crops Prod 49:23–32

    Article  CAS  Google Scholar 

  • Kono H (2013) 1H and 13C chemical shift assignment of the monomers that comprise carboxymethylcellulose. Carbohydr Polym 97:384–390

    Article  CAS  Google Scholar 

  • Kuckurek M (1989) Pulp and paper manufacture. 4. Tappi, Atlanta, pp 324–344

    Google Scholar 

  • Kumar R, Hu F, Sannigrahi P, Jung S, Ragauskas AJ, Wyman CE (2013) Carbohydrate derived-pseudo-lignin can retard cellulose biological conversion. Biotechnol Bioeng 110:737–753

    Article  CAS  Google Scholar 

  • Li J, Gellerstedt G, Toven K (2009) Steam explosion lignins: their extraction, structure and potential as feedstock for biodiesel and chemicals. Bioresour Technol 100:2556–2561

    Article  CAS  Google Scholar 

  • Lin SY, Dence CW (1992) Methods in lignin chemistry. Springer series in wood science. Springer, Berlin, pp 33–40

    Book  Google Scholar 

  • Mansouri S, Khiari R, Bettaieb F, El-Gendy AA, Mhenni F (2015) Synthesis and characterization of carboxymethyl cellulose from Tunisian vine stem: study of water absorption and retention capacities. J Polym Environ 23:190–198

    Article  CAS  Google Scholar 

  • Michell AJ (1988) Second derivative FT-IR spectra of celluloses I and II and related mono- and oligo-saccharides. Carbohydr Res 173:185–195

    Article  CAS  Google Scholar 

  • Michell AJ (1990) Second-derivative FT-IR spectra of native celluloses. Carbohydr Res 197:53–60

    Article  CAS  Google Scholar 

  • Muñoz F, Rubilar R, Espinosa M, Cancino J, Toro J, Herrera M (2008) The effect of pruning and thinning on above ground aerial biomass of Eucalyptus nitens (Deane & Maiden) Maiden. For Ecol Manag 255:365–373

    Article  Google Scholar 

  • Muurinen E (2000) Organosolv pulping—a review and distillation study related to peroxyacid pulping. Dissertation, University of Oulu, Finland

  • Naboka O, Yim C, Abu-Lebdeh Y (2016) Graphene/Na carboxymethyl cellulose composite for Li-ion batteries prepared by enhanced liquid exfoliation. Mater Sci Eng, B 213:41–50

    Article  CAS  Google Scholar 

  • Oliet M, Garcia J, Rodríguez F, Gilarranz MA (2002) Solvent effects in autocatalyzed alcohol–water pulping comparative study between ethanol and methanol as delignifying agents. Chem Eng J 87:157–162

    Article  CAS  Google Scholar 

  • Pinkard E, Beadle C (1998) Effects of green pruning on growth and stem shape of Eucalyptus nitens (Deane and Maiden) Maiden. New Forest 15:107–126

    Article  Google Scholar 

  • Popescu CM, Popescu MC, Singurel G, Vasile C, Argyropoulos DS, Willfor S (2007) Spectral characterization of eucalyptus wood. Appl Spectrosc 61(11):1168–1177

    Article  CAS  Google Scholar 

  • Pu Y, Hu F, Huang F, Davison BH, Ragauskas AJ (2013) Assessing the molecular structure basis for biomass recalcitrance during dilute acid and hydrothermal pretreatments. Biotechnol Biofuels 6(15):1–13

    Google Scholar 

  • Roberts S, Barton-Johnson R, McLarin M, Read S (2015) Predicting the water use of Eucalyptus nitens plantation sites in Tasmania from inventory data, and incorporation of water use into a forest estate model. For Ecol Manag 343:110–122

    Article  Google Scholar 

  • Ruzene DS, Goncalves AR, Teixeira JA, Pessoa de Amorim MT (2007) Carboxymethylcellulose obtained by ethanol/water organosolv process under acid conditions. Appl Biochem Biotechnol 573:136–140

    Google Scholar 

  • Sannigrahi P, Kim DH, Jung S, Ragauskas AJ (2011) Pseudo-lignin and pretreatment chemistry. Energy Environ Sci 4:1306–1310

    Article  CAS  Google Scholar 

  • Sundquist J (2000) Organosolv pulping. In: Gullichsen J, Fogelbolm CJ (eds) Chemical Pulping, Papermaking Science and Technology Book 6B. Fapet Oy, Finland, pp 411–427

    Google Scholar 

  • Togrul H, Arslan N (2003) Production of carboxymethyl cellulose from sugar beet pulp cellulose and rheological behavior of carboxymethyl cellulose. Carbohydr Polym 54:73–82

    Article  CAS  Google Scholar 

  • Tonoli GHD, Teixeira EM, Corrêa AC, Marconcini JM, Caixeta LA, Pereira-da-Silva MA, Mattoso LHC (2012) Cellulose micro/nanofibres from eucalyptus kraft pulp: preparation and properties. Carbohydr Polym 89:80–88

    Article  CAS  Google Scholar 

  • Varshney VK, Naithani S (2011) Chemical functionalization of cellulose derived from nonconventional sources. Cellulose fibers: bio-and nano-polymer composites. Springer, Berlin, pp 43–60

    Chapter  Google Scholar 

  • Vroom KE (1957) The “H” factor: a means of expressing cooking times and temperatures as a single variable. Pulp Paper Mag Can 58:228–231

    Google Scholar 

  • Yadollahi M, Gholamali I, Namazi H, Aghazadeh M (2015) Synthesis and characterization of antibacterial carboxymethylcellulose/CuO bio-nanocomposite hydrogels. Int J Biol Macromol 73:109–114

    Article  CAS  Google Scholar 

  • Yañez-S M, Rojas J, Castro J, Ragauskas AJ, Baeza J, Freer J (2013) Fuel ethanol production from Eucalyptus globulus wood by autocatalyzed organosolv pretreatment ethanol-water and SSF. J Chem Technol Biotechnol 88:39–48

    Article  Google Scholar 

  • Yañez-S M, Matsuhiro B, Nuñez C, Pan S, Hubbell CA, Sannigrahi P, Ragauskas AJ (2014) Physicochemical characterization of ethanol organosolv lignin (EOL) from Eucalyptus globulus: effect of extraction conditions on the molecular structure. Polym Degrad Stab 110:184–194

    Article  Google Scholar 

  • Zhao X, Cheng K, Liu D (2009) Organosolv pretreatment of lignocellulosic biomass for enzymatic hydrolysis. Appl Microbiol Biotechnol 82:815–827

    Article  CAS  Google Scholar 

  • Ziaie-Shirkolaee Y, Mohammadi-Rovshandeh J, Rezayati Charani P, Khajeheian MB (2007) Study on cellulose degradation during organosolv-delignification of wheat straw and evaluation of pulp properties. Iran Polym J 16(2):83–96

    CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully thank FONDECYT for financial support through Inserción de Capital Humano Avanzado en la academia Project No. 79100010, DICYT Asociativo (USACH) Project No. 021541YS, Proyecto DICYT 021642MD and Proyecto Basal Usach USA1398_MS002228.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mauricio Yáñez-S.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yáñez-S, M., Matsuhiro, B., Maldonado, S. et al. Carboxymethylcellulose from bleached organosolv fibers of Eucalyptus nitens: synthesis and physicochemical characterization. Cellulose 25, 2901–2914 (2018). https://doi.org/10.1007/s10570-018-1766-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-018-1766-7

Keywords

Navigation