Skip to main content

Advertisement

Log in

Surface-oriented fluorinated pyridinium silicone with enhanced antibacterial activity on cotton via supercritical impregnation

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Most research efforts focus on synthesis of new biocides. This study shows that orientating biocidal groups on top surface with the help of a low-surface-tension constituent also imparts enhanced antibacterial ability. A CO2-philic biocidal silicone with pyridinium pendants was synthesized by hydrosilylation reaction of (45% methylhydrosiloxane)–dimethylsiloxane random copolymer (P(MHS–DMS)) and 4-vinylpyridine and subsequent quaternization of pyridine groups with 6-perfluorooctyl-1-bromohexane. The fluorinated pyridinium silicone was impregnated into cotton yarns in supercritical CO2 to form a 50 nm thickness biocidal layer at 24 MPa and 50 °C. Pyridinium groups preferentially segregated to the top surface with the aid of low-surface-tension perfluorooctyl segments and provided higher biocidal efficacy against Staphylococcus aureus and Escherichia coli compared to their counterparts that were quaternized with 1-bromohexane at similar total pyridinium content of about 4.65 × 1016/cm2. The synthesis and coating results were characterized by FTIR, SEM, and XPS. The stabilities of fluorinated pyridinium silicone layer toward washing cycles, UV irradiation, and storage were good. The presented strategy uses environmentally benign CO2 as solvent and affords a general method to functionalize polymers for improved biocidal capability due to the surface orientation of pyridinium groups.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Scheme 2
Scheme 3
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Aguilar-Colomer A, Doadrio JC, Pérez-Jorge C, Manzano M, Vallet-Regí M, Esteban J (2017) Antibacterial effect of antibiotic-loaded SBA-15 on biofilm formation by Staphylococcus aureus and Staphylococcus epidermidis. J Antibiot 70:259–263

    Article  CAS  Google Scholar 

  • Barnes K, Liang J, Wu R, Worley SD, Lee J, Broughton RM, Huang TS (2006) Synthesis and antimicrobial applications of 5,5′-ethylenebis[5-methyl-3-(3-triethoxysilylpropyl)hydantoin. Biomaterials 27:4825–4830

    Article  CAS  Google Scholar 

  • Bayraktar Z, Kiran E (2000) Miscibility, phase separation, and volumetric properties in solutions of poly(dimethylsiloxane) in supercritical carbon dioxide. J Appl Polym Sci 75:1397–1403

    Article  CAS  Google Scholar 

  • Butola BS, Mohammad F (2016) Silver nanomaterials as future colorants and potential antimicrobial agents for natural and synthetic textile materials. RSC Adv 6:44232–44247

    Article  Google Scholar 

  • Cao Z, Sun X, Yao J, Sun Y (2013) Silver sulfadiazine–immobilized celluloses as biocompatible polymeric biocides. J Bioact Compat Polym 28:398–410

    Article  CAS  Google Scholar 

  • Cerkez I, Kocer HB, Worley SD, Broughton RM, Huang TS (2011) N-halamine biocidal coatings via a layer-by-layer assembly technique. Langmuir 27:4091–4097

    Article  CAS  Google Scholar 

  • Chang SH, Park SC, Shim JJ (1998) Phase equilibria of supercritical fluid–polymer systems. J Supercrit Fluids 13:113–119

    Article  CAS  Google Scholar 

  • Chebil MS, Vignaud G, Grohens Y, Konovalov O, Sanyal MK, Beuvier T, Gibaud A (2012) In situ X-ray reflectivity study of polystyrene ultrathin films swollen in carbon dioxide. Macromolecules 45:6611–6617

    Article  CAS  Google Scholar 

  • Chen Y, Han Q (2011) Designing N-halamine based antibacterial surface on polymers: fabrication, characterization, and biocidal functions. Appl Surf Sci 257:6034–6039

    Article  CAS  Google Scholar 

  • Chen Y, Teng H-N (2012) Functionalizing PS microspheres by supercritical deposition of P(S-b-tBA) for diverse interfacial properties exemplified with biocidal ability. Chin J Polym Sci 30:451–459

    Article  CAS  Google Scholar 

  • Chen Y, Lu H, Wang P (2010) Surface functionalization of polystyrene to bind with FMRF peptides for novel biocompatibility. Chin J Polym Sci 28:895–902

    Article  Google Scholar 

  • Chen Y, Zhong X, Zhang Q (2012) Synthesis of CO2-philic polysiloxane with N-halamine side groups for biocidal coating on cotton. Ind Eng Chem Res 51:9260–9265

    Article  CAS  Google Scholar 

  • Chen Y, Niu M, Yuan S, Teng H (2013) Durable antimicrobial finishing of cellulose with QSA silicone by supercritical adsorption. Appl Surf Sci 264:171–175

    Article  CAS  Google Scholar 

  • Chen Y, Han Q, Wang Y, Zhang Q, Qiao X (2015) Synthesis of pyridinium polysiloxane for antibacterial coating in supercritical carbon dioxide. J Appl Polym Sci 132:41723

    Google Scholar 

  • Chen Y, Yu P, Feng C, Wang Y, Han Q, Zhang Q (2017a) Synthesis of polysiloxane with quaternized N-halamine moieties for antibacterial coating of polypropylene via supercritical impregnation technique. Appl Surf Sci 419:683–691

    Article  CAS  Google Scholar 

  • Chen Y, Yu P, Ren G, Zhang Q, Han Q, Teng H (2017b) Interpenetration of polyethylene terephthalate with biocidal quaternary ammonium/N-chloramine polysiloxane in supercritical CO2. Ind Eng Chem Res 56:9560–9568

    Article  CAS  Google Scholar 

  • Chen Y, Zhang Q, Han Q, Mi Y, Sun S, Feng C, Xiao H, Yu P, Yang C (2017c) Synthesis of polysiloxane with 5,5-dimethylhydantoin-based N-halamine pendants for biocidal functionalization of polyethylene by supercritical impregnation. J Appl Polym Sci 134:44721

    Google Scholar 

  • Cheng Z, Zhu X, Shi ZL, Neoh KG, Kang ET (2005) Polymer microspheres with permanent antibacterial surface from surface-initiated atom transfer radical polymerization. Ind Eng Chem Res 44:7098–7104

    Article  CAS  Google Scholar 

  • Demir B, Cerkez I, Worley SD, Broughton RM, Huang TS (2015) N-halamine-modified antimicrobial polypropylene nonwoven fabrics for use against airborne bacteria. ACS Appl Mater Interfaces 7:1752–1757

    Article  CAS  Google Scholar 

  • Denis-Rohr A, Bastarrachea LJ, Goddard JM (2015) Antimicrobial efficacy of N-halamine coatings prepared via dip and spray layer-by-layer deposition. Food Bioprod Process 96:12–19

    Article  CAS  Google Scholar 

  • Erdem R, Rajendran S (2016) Influence of silver loaded antibacterial agent on knitted and nonwoven fabrics and some fabric properties. J Eng Fibers Fabr 11:38–46

    CAS  Google Scholar 

  • Farah S, Aviv O, Laout N, Ratner S, Beyth N, Domb AJ (2015) Quaternary ammonium poly(diethylaminoethyl methacrylate) possessing antimicrobial activity. Colloids Surf B 128:608–613

    Article  CAS  Google Scholar 

  • Gao B, Qi C, Liu Q (2008) Immobilization of quaternary ammonium salts on grafting particle polystyrene/SiO2 and preliminary study of application performance. Appl Surf Sci 254:4159–4165

    Article  CAS  Google Scholar 

  • Gomes AP, Mano JF, Queiroz JA, Gouveia IC (2015) Layer-by-layer assembly for biofunctionalization of cellulosic fibers with emergent antimicrobial agents. Adv Polym Sci 2016:225–240

    Google Scholar 

  • Guo H, Ulbricht M (2010) Surface modification of polypropylene microfiltration membrane via entrapment of an amphiphilic alkyl oligoethyleneglycolether. J Membr Sci 349:312–320

    Article  CAS  Google Scholar 

  • Hong KH, Liu N, Sun G (2009) UV-induced graft polymerization of acrylamide on cellulose by using immobilized benzophenone as a photo-initiator. Eur Polym J 45:2443–2449

    Article  CAS  Google Scholar 

  • Hu B, Chen X, Zuo Y, Liu Z, Xing X (2014) Dual action bactericides: quaternary ammonium/N-halamine-functionalized cellulose fiber. J Appl Polym Sci. https://doi.org/10.1002/app.40070

    Google Scholar 

  • Huang J, Koepsel RR, Murata H, Wu W, Sang BL, Kowalewski T, Russell AJ, Matyjaszewski K (2008) Nonleaching antibacterial glass surfaces via “grafting onto”: the effect of the number of quaternary ammonium groups on biocidal activity. Langmuir 24:6785–6795

    Article  CAS  Google Scholar 

  • Jiang Z, Liu Y, Li R, Ren X, Huang TS (2016) Preparation of antibacterial cellulose with a monochloro-s-triazine-based N-halamine biocide. Polym Adv Technol 27:460–465

    Article  Google Scholar 

  • Kang J, Han J, Gao Y, Gao T, Lan S, Xiao L, Zhang Y, Gao G, Chokto H, Dong A (2015) Unexpected enhancement in antibacterial activity of N-halamine polymers from spheres to fibers. ACS Appl Mater Interfaces 7:17516–17526

    Article  CAS  Google Scholar 

  • Koberstein JT (2004) Molecular design of functional polymer surfaces. J Polym Sci Part B Polym Phys 42:2942–2956

    Article  CAS  Google Scholar 

  • Kocer HB, Cerkez I, Worley SD, Broughton RM, Huang TS (2011) Polymeric antimicrobial N-halamine epoxides. ACS Appl Mater Interfaces 3:2845–2850

    Article  CAS  Google Scholar 

  • Krishnan S, Ward RJ, Hexemer A, Sohn KE, Lee KL, Angert ER, Fischer DA, Kramer EJ, Ober CK (2006) Surfaces of fluorinated pyridinium block copolymers with enhanced antibacterial activity. Langmuir 22:11255–11266

    Article  CAS  Google Scholar 

  • Li X, Liu Y, Jiang Z, Li R, Ren X, Huang TS (2015) Synthesis of an N-halamine monomer and its application in antimicrobial cellulose via an electron beam irradiation process. Cellulose 22:3609–3617

    Article  CAS  Google Scholar 

  • Li W, Meng L, Wang L, Mu J, Pan Q (2016) Surface modification of ultra-high molecular weight polyethylene fibers by chromic acid. Surf Interface Anal 48:1316–1319

    Article  CAS  Google Scholar 

  • Liu S, Sun G (2008) New refreshable N-halamine polymeric biocides: N-chlorination of acyclic amide grafted cellulose. Ind Eng Chem Res 48:613–618

    Article  Google Scholar 

  • Liu Y, Li J, Cheng X, Ren X, Huang TS (2015) Self-assembled antibacterial coating by N-halamine polyelectrolytes on a cellulose substrate. J Mater Chem B 3:1446–1454

    Article  CAS  Google Scholar 

  • Murata H, Koepsel RR, Matyjaszewskic K, Russell AJ (2007) Permanent, non-leaching antibacterial surfaces—2: how high density cationic surfaces kill bacterial cells. Biomaterials 28(28):4870–4879

    Article  CAS  Google Scholar 

  • Muth O, Hirth T, Vogel H (2000) Polymer modification by supercritical impregnation. J Supercrit Fluids 17:65–72

    Article  CAS  Google Scholar 

  • O’Neill ML, Cao Q, Fang M, Johnston KP, Wilkinson SP, Smith CD, Kerschner JL, Jureller SH (1998) Solubility of homopolymers and copolymers in carbon dioxide. Ind Eng Chem Res 37:3067–3079

    Article  Google Scholar 

  • Ouyang M, Muisener RJ, Boulares A, Koberstein JT (2000a) UV-ozone induced growth of a SiOx surface layer on a cross-linked polysiloxane film: characterization and gas separation properties. J Membr Sci 177:177–187

    Article  CAS  Google Scholar 

  • Ouyang M, Yuan C, Muisener RJ, Boulares A, Koberstein JT (2000b) Conversion of some siloxane polymers to silicon oxide by UV/Ozone photochemical processes. Chem Mater 12:1591–1596

    Article  CAS  Google Scholar 

  • Owens DK, Wendt RC (1969) Estimation of the surface free energy of polymers. J Appl Polym Sci 13:1741–1747

    Article  CAS  Google Scholar 

  • Pan F, Wang P, Lee K, Wu A, Turro NJ, Koberstein JT (2005) Photochemical modification and patterning of polymer surfaces by surface adsorption of photoactive block copolymers. Langmuir 21:3605–3612

    Article  CAS  Google Scholar 

  • Rai A, Prabhune A, Perry CC (2010) Antibiotic mediated synthesis of gold nanoparticles with potent antimicrobial activity and their application in antimicrobial coatings. J Mater Chem 20:6789–6798

    Article  CAS  Google Scholar 

  • Ren X, Akdag A, Kocer HB, Worley S, Broughton R, Huang T (2009) N-halamine-coated cotton for antimicrobial and detoxification applications. Carbohydr Polym 78:220–226

    Article  CAS  Google Scholar 

  • Rindfleisch F, DiNoia TP, McHugh MA (1996) Solubility of polymers and copolymers in supercritical CO2. J Phys Chem 100:15581–15587

    Article  CAS  Google Scholar 

  • Rudenja S, Zhao N, Liu S (2010) Surface interpenetrating networks of polyacrylamide in poly(ethylene terephthalate) as a means of surface modification. Eur Polym J 46:2078–2084

    Article  CAS  Google Scholar 

  • Suleman N, Kalhapure RS, Mocktar C, Rambharose S, Singh M, Govender T (2015) Silver salts of carboxylic acid terminated generation 1 poly (propyl ether imine) (PETIM) dendron and dendrimers as antimicrobial agents against S. aureus and MRSA. RSC Adv 5:34967–34978

    Article  CAS  Google Scholar 

  • Sun Y, Sun G (2004) Novel refreshable N-halamine polymeric biocides: N-chlorination of aromatic polyamides. Ind Eng Chem Res 43:5015–5020

    Article  CAS  Google Scholar 

  • Wang J, Ober CK (1999) Solid state crystalline and liquid crystalline structure of semifluorinated 1-bromoalkane compounds. Liq Cryst 26:637–648

    Article  CAS  Google Scholar 

  • Wang P, Tan KL, Ho CC, Khew MC, Kang ET (2000) Surface modification of natural rubber latex films by graft copolymerization. Eur Polym J 36:1323–1331

    Article  CAS  Google Scholar 

  • Wang YM, Wang YJ, Lu XB (2008) “Grafting-from” polymerization for uniformly bulk modification of pre-existing polymer materials via a supercritical-fluid route. Polymer 49:474–480

    Article  Google Scholar 

  • Wang Y, Ding X, Chen Y, Guo M, Zhang Y, Guo X, Gu H (2016) Antibiotic-loaded, silver core-embedded mesoporous silica nanovehicles as a synergistic antibacterial agent for the treatment of drug-resistant infections. Biomaterials 101:207–216

    Article  CAS  Google Scholar 

  • Xin Z, Du S, Zhao C, Chen H, Sun M, Yan S, Luan S, Yin J (2016) Antibacterial performance of polypropylene nonwoven fabric wound dressing surfaces containing passive and active components. Appl Surf Sci 365:99–107

    Article  CAS  Google Scholar 

  • Xu WZ, Yang L, Charpentier PA (2016) Preparation of antibacterial softwood via chemical attachment of quaternary ammonium compounds using supercritical CO2. ACS Sustain Chem Eng 4:1551–1561

    Article  CAS  Google Scholar 

  • Yu HY, Jin Z, Gu JS, Song Y (2010) Manipulating membrane permeability and protein rejection of UV-modified polypropylene macroporous membrane. J Membr Sci 364:203–210

    Article  CAS  Google Scholar 

  • Yu D, Kang G, Tian W, Lin L, Wang W (2015a) Preparation of conductive silk fabric with antibacterial properties by electroless silver plating. Appl Surf Sci 357:1157–1162

    Article  CAS  Google Scholar 

  • Yu Q, Wu Z, Chen H (2015b) Dual-function antibacterial surfaces for biomedical applications. Acta Biomater 16:1–13

    Article  Google Scholar 

  • Zhao N, Liu S (2011) Thermoplastic semi-IPN of polypropylene (PP) and polymeric N-halamine for efficient and durable antibacterial activity. Eur Polym J 47:1633–1654

    Article  Google Scholar 

  • Zhao J, Millians W, Tang S, Wu T, Zhu L, Ming W (2015) Self-stratified antimicrobial acrylic coatings via one-step UV curing. ACS Appl Mater Interfaces 7:18467–18472

    Article  CAS  Google Scholar 

  • Zhu P, Sun G (2004) Antimicrobial finishing of wool fabrics using quaternary ammonium salts. J Appl Polym Sci 93:1037–1041

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Natural Science Foundation of Shandong province (Grant No. ZR2014EMM005) and A Project of Shandong Province Higher Educational Science and Technology Program (Grant No. J14LA16).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Y., Zhang, Q., Ma, Y. et al. Surface-oriented fluorinated pyridinium silicone with enhanced antibacterial activity on cotton via supercritical impregnation. Cellulose 25, 1499–1511 (2018). https://doi.org/10.1007/s10570-018-1657-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-018-1657-y

Keywords

Navigation