Skip to main content
Log in

The application of poly(methyl methacrylate-co-butyl acrylate-co-styrene) in reinforcing fragile papers: experiments and computer simulations

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

In museums, libraries and archives, some of the paper relics, upon ageing, are very brittle and even cannot be handled without destroying the material. This is because of the depolymerization of cellulose and, consequently, the loss of mechanical strength. To prolong the life expectancy of paper relics, the poly(methyl methacrylate-co-butyl acrylate-co-styrene) (MMA-BA-ST) was used to strengthen the fragile paper fibers in this work. The relation between the mass concentration of MMA-BA-ST emulsion and the specific properties of papers (e.g., folding endurance, tensile strength, tearing strength, whiteness and glossiness) and the ageing resistance were investigated. In addition, the effect of MMA-BA-ST on different types of paper was also studied. Furthermore, the reinforcing mechanism of MMA-BA-ST on paper was also investigated by dissipative particle dynamics simulations. The results showed that MMA-BA-ST could significantly improve the mechanical properties and ageing resistance of papers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Amornkitbamrung L, Mohan T, Hribernik S, Reichel V, Faivre D (2015) Polysaccharide stabilized nanoparticles for deacidification and strengthening of paper. RSC Adv 5:32950–32961

    Article  CAS  Google Scholar 

  • ASTM standard D6819-02e2 (2002) Standard test method for accelerated temperature aging of printing and writing paper by dry oven exposure apparatus. Annu B ASTM Stand 15:1–4

    Google Scholar 

  • ASTM standard D643-97 (2007) Standard test method for folding endurance of paper by the schopper tester. Annu B ASTM Stand 14:1–6

    Google Scholar 

  • Bai L, Hu H, Xu J (2012) Influences of configuration and molecular weight of hemicelluloses on their paper-strengthening effects. Carbohydr Polym 88:1258–1263

    Article  CAS  Google Scholar 

  • Burguiere C et al (2001) Block copolymers of poly(styrene) and poly(acrylic acid) of various molar masses, topologies, and compositions prepared via controlled/living radical polymerization. Application as stabilizers in emulsion polymerization. Macromolecules 34:4439–4450

    Article  CAS  Google Scholar 

  • Burguiere C, Chassenieux C, Charleux B (2003) Characterization of aqueous micellar solutions of amphiphilic block copolymers of poly(acrylic acid) and polystyrene prepared via ATRP. Toward the control of the number of particles in emulsion polymerization. Polymer 44:509–518

    Article  CAS  Google Scholar 

  • Chen Y, Knappe DRU, Barlaz MA (2004) Effect of cellulose/hemicellulose and lignin on the bioavailability of toluene sorbed to waste paper. Environ Sci Technol 38:3731–3736

    Article  CAS  Google Scholar 

  • Cheng F et al (2015) Characteristic of core materials in polymeric micelles effect on their micellar properties studied by experimental and dpd simulation methods. Int J Pharm 492:152–160

    Article  CAS  Google Scholar 

  • Chunhong Y, Malak ST, Kesong H, Weibin W, Tsukruk VV (2015) Cellulose nanocrystal microcapsules as tunable cages for nano- and microparticles. ACS Nano 9:10887–10895

    Article  Google Scholar 

  • Dorenbos G (2014) Pore network design: DPD-Monte Carlo study of solvent diffusion dependence on side chain location. J Power Sources 270:536–546

    Article  CAS  Google Scholar 

  • Dupont AL, Souguir Z, Mortha G, Cheradame H, Ipert S (2012) Simultaneous deacidification and reinforcement of very degraded papers using polysiloxanes. In: Sciences des Matériaux du Patrimoine Culturel, 2nd edn, vol 1. pp 1–2

  • Fan CF, Olafson BD, Blanco M, Hsu SL (1992) Application of molecular simulation to derive phase diagrams of binary mixtures. Macromolecules 25:3667–3676

    Article  CAS  Google Scholar 

  • Ferruti P (2013) Poly(amidoamine)s: past, present, and perspectives. J Polym Sci Polym Chem 51:2319–2353

    Article  CAS  Google Scholar 

  • Giorgi R, Baglioni M, Berti D, Baglioni P (2010) New methodologies for the conservation of cultural heritage: micellar solutions, microemulsions, and hydroxide nanoparticles. Acc Chem Res 43:695–704

    Article  CAS  Google Scholar 

  • Groot RD (2003) Electrostatic interactions in dissipative particle dynamics—simulation of polyelectrolytes and anionic surfactants. J Chem Phys 119:10454

    Article  CAS  Google Scholar 

  • Groot R, Rabone K (2001) Mesoscopic simulation of cell membrane damage, morphology change and rupture by nonionic surfactants. Biophys J 81:725–736

    Article  CAS  Google Scholar 

  • Groot RD, Warren PB (1997) Dissipative particle dynamics: bridging the gap between atomistic and mesoscopic simulation. J Chem Phys 107:4423–4429

    Article  CAS  Google Scholar 

  • Guerfali M, Saidi A, Gargouri A, Belghith H (2015) Enhanced enzymatic hydrolysis of waste paper for ethanol production using separate saccharification and fermentation. Appl Biochem Biotechnol 175:25–42

    Article  CAS  Google Scholar 

  • Guo H, Cui J, Sun D, Zhou J (2012) Dissipative particle dynamics simulation on phase behavior of thermo-responsive amphiphilic copolymer PCL-PNIPAM-PCL. CIESC J 63:3707–3715

    CAS  Google Scholar 

  • Guo H, Qiu X, Zhou J (2013) Self-assembled core–shell and Janus microphase separated structures of polymer blends in aqueous solution. J Chem Phys 139:8323–8331

    Google Scholar 

  • Hoogerbrugge P, Koelman J (1992) Simulating microscopic hydrodynamic phenomena with dissipative particle dynamics. EPL (Europhys Lett) 19:155–158

    Article  Google Scholar 

  • Ipert Rousset S, Cheradame EH (2016) Mass deacidification of papers and books III: study of a paper strengthening and deacidification process with amino alkyl alkoxy silanes. Restaur Int J Preserv Libr Arch Mater 26:250–264

    Google Scholar 

  • Ipert S, Dupont AL, Lavédrine B, Bégin P, Rousset E, Cheradame H (2006a) Mass deacidification of papers and books. IV—a study of papers treated with aminoalkylalkoxysilanes and their resistance to ageing. Polym Degrad Stab 91:3448–3455

    Article  CAS  Google Scholar 

  • Ipert S, Dupont AL, Lavedrine B, Begin P, Rousset E, Cheradame H (2006b) Mass deacidification of papers and books. IV—a study of papers treated with aminoalkylalkoxysilanes and their resistance to ageing. Polym Degrad Stabil 91:3448–3455

    Article  CAS  Google Scholar 

  • Isca C, D’Avorgna S, Graiff C, Montanari M, Ugozzoli F, Predieri G (2016) Paper preservation with polyamidoamines: a preliminary study. Cellulose 23:1415–1432

    Article  CAS  Google Scholar 

  • Khan AK, Ray BC, Maiti J, Dolui SK (2009) Preparation of core-shell latex from co-polymer of styrene-butyl acrylate-methyl methacrylate and their paint properties. Pigm Resin Technol 38:159–164

    Article  CAS  Google Scholar 

  • Li S, Zhang X, Dong W, Wang W (2008) Computer simulations of solute exchange using micelles by a collision-driven fusion process. Langmuir 24:9344–9353

    Article  CAS  Google Scholar 

  • Li Y, Zhang X, Cao D (2015) Nanoparticle hardness controls the internalization pathway for drug delivery. Nanoscale 7:2758–2769

    Article  CAS  Google Scholar 

  • Liu HY, Guo HY, Zhou J (2012) Computer simulations on the anticancer drug delivery system of docetaxel and PLGA-PEG copolymer. Acta Chim Sin 70:2445–2450

    Article  CAS  Google Scholar 

  • Mai J, Sun D, Li L, Zhou J (2016a) Phase behavior of an amphiphilic block copolymer in ionic liquid: a dissipative particle dynamics study. J Chem Eng Data 24:3999–4005

    Google Scholar 

  • Mai JL, Sun DL, Quan XB, Li LB, Zhou J (2016b) Mesoscopic structure of nafion-ionic liquid membrane using dissipative particle dynamics simulations. Acta Phys Chim Sin 32:1649–1657

    CAS  Google Scholar 

  • Mather BD, Viswanathan K, Miller KM, Long TE (2006) Michael addition reactions in macromolecular design for emerging technologies. Prog Polym Sci 31:487–531

    Article  CAS  Google Scholar 

  • Meshram MW, Patil VV, Mhaske ST, Thorat BN (2009) Graft copolymers of starch and its application in textiles. Carbohydr Polym 75:71–78

    Article  CAS  Google Scholar 

  • Nie S, Zhang X, Gref R, Couvreur P, Qian Y, Zhang L (2015) Multilamellar nanoparticles self-assembled from opposite charged blends: insights from mesoscopic simulation. J Phys Chem C 119:20649–20661

    Article  CAS  Google Scholar 

  • Piovesan C, Fabre-Francke I, Fichet O, Dupont AL, Lavédrine B (2013) Conservation Treatment of Newsprint Paper by Polysiloxanes. Study of interpenetrating networks for strengthening and deacidification (CoMPresSil project). In: Cultural heritage conservation science and sustainable development: experience, research, innovation, vol 12. pp 118–126

  • Piovesan C, Dupont A-L, Fabre-Francke I, Fichet O, Lavédrine B, Chéradame H (2014a) Paper strengthening by polyaminoalkylalkoxysilane copolymer networks applied by spray or immersion: a model study. Cellulose 21:705–715

    Article  CAS  Google Scholar 

  • Piovesan C, Dupont AL, Fabre-Francke I, Fichet O, Lavédrine B, Cheradame H (2014) A new conservation treatment for strengthening and deacidification of paper using polysiloxane networks. In: ChemCH 2014—third international congress on chemistry for cultural heritage, vol 15. pp 121–126

  • Poggi G, Toccafondi N, Melita LN, Knowles JC, Bozec L, Giorgi R, Baglioni P (2014) Calcium hydroxide nanoparticles for the conservation of cultural heritage: new formulations for the deacidification of cellulose-based artifacts. Appl Phys A 114:685–693

    Article  CAS  Google Scholar 

  • Potthast A, Henniges U, Banik G (2008) Iron gall ink-induced corrosion of cellulose: aging, degradation and stabilization. Part 1: model paper studies. Cellulose 15:849–859

    Article  CAS  Google Scholar 

  • Seaton MA, Anderson RL, Metz S, Smith W (2013) DL_MESO: highly scalable mesoscale simulations. Mol Simul 39:796–821

    Article  CAS  Google Scholar 

  • Soto-Figueroa C, Rodriguez-Hidalgo MdR, Vicente L (2012) Dissipative particle dynamics simulation of the micellization-demicellization process and micellar shuttle of a diblock copolymer in a biphasic system (water/ionic-liquid). Soft Matter 8:1871–1877

    Article  CAS  Google Scholar 

  • Souguir Z, Dupont AL, d’Espinose de Lacaillerie JB, Lavedrine B, Cheradame H (2011) Chemical and physicochemical investigation of an aminoalkylalkoxysilane as strengthening agent for cellulosic materials. Biomacromol 12:2082–2091

    Article  CAS  Google Scholar 

  • Souguir Z, Dupont A-L, Fatyeyeva K, Mortha G, Cheradame H, Ipert S, Lavédrine B (2012) Strengthening of degraded cellulosic material using a diamine alkylalkoxysilane. RSC Adv 2:7470–7478

    Article  CAS  Google Scholar 

  • Stuart MA et al (2010) Emerging applications of stimuli-responsive polymer materials. Nat Mater 9:101–113

    Article  Google Scholar 

  • Sun DL, Zhou J (2012) Dissipative particle dynamics simulations on mesoscopic structures of nafion and PVA/nafion blend membranes. Acta Phys Chim Sin 28:909–916

    CAS  Google Scholar 

  • Wang S, Sun Y, Kong F, Yang G, Fatehi P (2016) Preparation and characterization of lignin-acrylamide copolymer as a paper strength additive. BioResources 11:1765–1783

    CAS  Google Scholar 

  • Wu B, Taylor CM, Knappe DR, Nanny MA, Barlaz MA (2001) Factors controlling alkylbenzene sorption to municipal solid waste. Environ Sci Technol 35:4569–4576

    Article  CAS  Google Scholar 

  • Xiong R et al (2016) Ultrarobust transparent cellulose nanocrystal-graphene membranes with high electrical conductivity. Adv Mater 28:1501–1509

    Article  CAS  Google Scholar 

  • Zhang RL, Huang YD, Liu L, Tang YR, Su D, Xu LW (2011) Effect of the molecular weight of sizing agent on the surface of carbon fibres and interface of its composites. Appl Surf Sci 257:3519–3523

    Article  CAS  Google Scholar 

  • Zhang L, Feng Q, Wang J, Sun J, Shi X, Jiang X (2015a) Microfluidic synthesis of rigid nanovesicles for hydrophilic reagents delivery. Angew Chem 54:3952–3956

    Article  CAS  Google Scholar 

  • Zhang RL, Zhang JS, Zhao LH, Sun YL (2015b) Sizing agent on the carbon fibers surface and interface properties of its composites. Fibers Polym 16:657–663

    Article  CAS  Google Scholar 

  • Zhu K, Li X, Wang H, Fei G, Li J (2016) Properties and paper sizing application of waterborne polyurethanemicroemulsions: effects of extender, cross-linker, and polyol. J Appl Polym Sci 133:43201–43211

    Google Scholar 

Download references

Acknowledgments

Support from the National Natural Science Foundation of China (Nos. 91334202, 21376089), the National Key Basic Research Program of China (No. 2013CB733500), Guangdong Science Foundation (No. 2014A030312007) and the Fundamental Research Funds for the Central Universities (SCUT-2015ZP033) are gratefully acknowledged. An allocation time from the SCUT Grid at South China University of Technology is also gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guopeng Shen or Jian Zhou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qiao, L., Chen, K., Zhao, D. et al. The application of poly(methyl methacrylate-co-butyl acrylate-co-styrene) in reinforcing fragile papers: experiments and computer simulations. Cellulose 24, 5157–5171 (2017). https://doi.org/10.1007/s10570-017-1470-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-017-1470-z

Keywords

Navigation