Skip to main content
Log in

The effect of polyacrylic acid and reaction conditions on nanocluster formation of precipitated calcium carbonate on microcellulose

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

The precipitation of micro- and nanoparticles of calcium carbonate onto lignocellulosic microfibers was investigated at different microfiber concentrations with and without polyacrylic acid (PAA), i.e. a polymer commonly used to form polymer-induced liquid precursors of CaCO3. Concentrations of PAA, Ca(OH)2, CO2 and microfiber were varied in order to study the impact of reaction conditions on PCC formation in a batch reactor operated at ambient temperature. High resolution scanning electron micrographs of the samples show that both microfiber concentration and PAA dosage affected the nucleation and crystal growth of PCC filler on cellulosic fiber. Interestingly, at higher microfiber concentrations, larger amount of nano-sized spherical crystals were formed on the microfibers. A higher dosage of PAA, on the other hand, resulted in less nucleation on the microfiber, suggesting a preferential bulk nucleation mechanism. A higher concentration of PAA during the precipitation also led to the formation and stabilization of amorphous CaCO3, which was supported by SEM images and XRD analysis (lack of characteristic crystal structure).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Alince B, Bednar F (2003) Role of cationic polyacrylamide in fiber-CaCO3 pigment interactions. J Appl Polym Sci 88:2409–2415

    Article  CAS  Google Scholar 

  • Burgess MS, Philipps JS, Xiao H (2000) Flocculation of PCC induced by polymer/microparticle systems: floc characteristics. Nordic Pulp Paper Res J 15(5):572–578

    Article  CAS  Google Scholar 

  • Butler M, Glaser N, Weaver A, Kirkland M, Heppenstall-Butler M (2006) Calcium carbonate crystallization in the presence of biopolymers. Cryst Growth Des 6(3):781–794

    Article  CAS  Google Scholar 

  • Ciobanu M, Bobu E, Ciolacu F (2010) In-situ cellulose fibres loading with calcium carbonate precipitated by different methods. Cellul Chem Technol 44(9):379–387

    CAS  Google Scholar 

  • Cölfen H, Antonietti M (2008) Mesocrystals and nonclassical crystallization. Wiley, Chichester

    Book  Google Scholar 

  • Gebauer D, Oliynyk V, Salajkova M, Sort J, Zhou Q, Bergström L, Salazar-Alvarez G (2011) A transparent hybrid nanocrystalline cellulose and amorphous calcium carbonate nanoparticles. Nanoscale 3:3563–3566

    Article  CAS  Google Scholar 

  • Gower L, Odom D (2000) Deposition of calcium carbonate films by a polymer-induced liquid-precursor (PILP) process. J Cryst Growth 210:719–734

    Article  CAS  Google Scholar 

  • Haleem N, Arshad M, Shahid M, Tahir M (2014) Synthesis of carboxymethyl cellulose from waste of cotton ginning industry. Carbohydr Polym 113:249–255

    Article  CAS  Google Scholar 

  • Hardikar V, Matijević E (2001) Influence of ionic and nonionic dextrans on the formation of calcium hydroxide and calcium carbonate particles. Colloids Surf A 186:23–31

    Article  CAS  Google Scholar 

  • Hosoda N, Kato T (2001) Thin-film formation of calcium carbonate crystals: effects of functional groups of matrix polymers. Chem Mater 3:688–693

    Article  Google Scholar 

  • Hu Z, Deng Y (2004) Synthesis of needle-like aragonite from calcium chloride and sparingly soluble magnesium carbonate. Powder Technol 140:10–16

    Article  CAS  Google Scholar 

  • Huang S-C, Naka K, Chujo YA (2007) Carbonate controlled-addition method for amorphous calcium carbonate spheres stabilized by poly(acrylic acid)s. Langmuir 23:12086–12095

    Article  CAS  Google Scholar 

  • Huang S-C, Naka K, Chujo Y (2008) Effect of molecular weights of poly(acrylic acid) on crystallization of calcium carbonate by the delayed addition method. Polym J 40(2):154–162

    Article  CAS  Google Scholar 

  • Jada A, Ait Akbour R, Jacquemet C, Suau J, Guerret O (2007) Effect of sodium polyacrylate molecular weight on the crystallogenesis of calcium carbonate. J Cryst Growth 306:373–382

    Article  CAS  Google Scholar 

  • Kellermeier M, Melero-García E, Glaab F, Klein R, Drechsler M, Rachel R, García-Ruiz J, Kunz W (2010) Stabilization of amorphous calcium carbonate in inorganic silica-rich environments. J Am Chem Soc 132:17859–17866

    Article  CAS  Google Scholar 

  • Kim H, Park S, Han J, Lee H (2013) Microbially mediated calcium carbonate precipitation on normal and lightweight concrete. Constr Build Mater 38:1073–1082

    Article  Google Scholar 

  • Kirboga S, Oner M, Akoyl E (2014) The effect of ultrasonication on calcium carbonate crystallization in the presence of biopolymer. J Cryst Growth 401:266–270

    Article  CAS  Google Scholar 

  • Kitamura M, Konno H, Yasui A, Masuoka H (2002) Controlling factors and mechanism of reactive crystallization of calcium carbonate polymorphs from calcium hydroxide suspensions. J Cryst Growth 236:323–332

    Article  CAS  Google Scholar 

  • Klungness J, Caulfield D, Sachs I, Tan F, Sykes M, Shilts R (1994) Fiber-loading: a progress report. In: Proceedings of the 1994 TAPPI recycling symposium. TAPPI, Boston, pp 283–290

  • Klungness J, Sykes M, Tan F, Abubakr S, Eisenwasser J (1996) Effect of fiber loading on paper properties. Tappi J 79(3):297–301

    CAS  Google Scholar 

  • Klungness J, Tan F, Aziz S, Sykes M (1997) Retention of calcium carbonate during recycling: direct loading versus fiber loading. In: Environmental conference and exhibit book 1. TAPPI, Atlanta, pp 497–503

  • Klungness J, Ahmed A, Ross-Sutherla N, AbuBakr S (2000) Lightweight, high-opacity paper by fiber loading: filler comparison. Nord Pulp Pap Res J 15(5):345–350

    Article  CAS  Google Scholar 

  • Kumar P, Gautam S, Kumar V, Singh S (2009) Enhancement of optical properties of bagasse pulp by in situ filler precipitation. BioResources 4(4):1635–1646

    CAS  Google Scholar 

  • Kumar P, Negi Y, Singh S (2011) Filler loading in the lumen or/and cell wall of fibers—a literature review. BioResources 6(3):3526–3546

    Google Scholar 

  • López-Periago A, Pacciani R, Cracía-González C, Vega L, Domingo CA (2010) Breakthrough technique for the preparation of high-yield precipitated calcium carbonate. J Supercrit Fluids 52:298–305

    Article  Google Scholar 

  • Matahwa H, Ramiah V, Sanderson R (2008) Calcium carbonate crystallization in the presence of modified polysaccharides and linear polymeric additives. J Cryst Growth 310:4561–4569

    Article  CAS  Google Scholar 

  • Mohamadzadeh-Saghavaz K, Resalati H, Mehrabi E (2013) Characterization of cellulose–PCC composite filler synthesized from CMC and BSKP fibrils by hydrolysis of ammonium carbonate. Powder Technol 246:93–97

    Article  CAS  Google Scholar 

  • Mohamadzadeh-Saghavaz K, Resalati H, Ghasemian A (2014) Cellulose-precipitated calcium carbonate composites and their effect on paper properties. Chem Pap 68(6):774–778. doi:10.2478/s11696-013-0513-7

    Article  CAS  Google Scholar 

  • Nielsen J, Sand K, Pedersen C, Lakshtanov L, Winther J, Willemoës M, Stipp S (2012) Polysaccharide effects on calcite growth: the influence of composition and branching. Cryst Growth Des 12:4906–4910

    Article  CAS  Google Scholar 

  • Obi Reddy K, Zhang J, Zhang J, Varada Rajulu A (2014) Preparation and properties of self-reinforced cellulose composite films from Agave microfibrils using an ionic liquid. Carbohydr Polym 144:537–545

    Article  Google Scholar 

  • Ouhenia S, Chateigner D, Blekhir M, Guilmeau E, Krauss C (2008) Synthesis of calcium carbonate polymorhs in the presence of polyacrylic acid. J Cryst Growth 310:2832–2841

    Article  CAS  Google Scholar 

  • Park W, Ko S-J, Lee S, Cho K-H, Ahn J-W, Han C (2008) Effects of magnesium chloride and organic additives on the synthesis of aragonite precipitated calcium carbonate. J Cryst Growth 310:2593–2601

    Article  CAS  Google Scholar 

  • Penttilä A, Sievänen J, Torvinen K, Ojanperä K, Ketoja JA (2012) Filler-nanocellulose substrate for printed electronics: experiments and model approach to structure and conductivity. Cellulose 19:821–829

    Article  Google Scholar 

  • Rantanen J, Dimic-Misic K, Kuusisto J, Maloney TC (2015) The effect of micro and nanofibrillated cellulose water uptake on high filler content composite paper properties and furnish dewatering. Cellulose 22:4003–4015

    Article  CAS  Google Scholar 

  • Renaudin G, Bertrand A, Dubois M, Gomes S, Chevalier P, Labrosse P (2008) A study of water releases in ground (GCC) and precipitated (PCC) calcium carbonates. J Phys Chem Solids 69:1603–1614

    Article  CAS  Google Scholar 

  • Shen J, Song Z, Qian X, Liu W (2009) Modification of papermaking grade fillers: a brief review. BioResources 4(3):1190–1209

    CAS  Google Scholar 

  • Silenius P (1996) Preparation of filler containing papermaking materials by precipitating calcium carbonate in situ in the presence of cellulosic materials. Lic.Sc.(Tech.) Thesis, Lappeenranta university of technology

  • Silenius P (2002) Improving the combinations of critical properties and process parameters of printing and writing papers and paperboards by new paper-filling methods. Ph.D. Dissertation (Tech.), Helsinki University of Technology

  • Subramanian R (2008) Engineering fine paper by utilising the structural elements of the raw materials. Ph.D. Dissertation (Tech.), Helsinki University of Technology

  • Subramanian R, Fordsmand H, Paulapuro H (2007) Precipitated calcium carbonate (PCC)-cellulose composite fillers; effect of PCC particle structure on the production and properties of uncoated fine paper. BioResources 2(1):91–105

    Google Scholar 

  • Tibolla H, Pelissari F, Menegalli F (2014) Cellulose nanofibers produced from banana peel by chemical and enzymatic treatment. LWT Food Sci Technol 59:1311–1318

    Article  CAS  Google Scholar 

  • Torvinen K, Sievänen J, Hjelt T, Hellén E (2012) Smooth and flexible filler-nanocellulose composite structure for printed electronics applications. Cellulose 19:821–829

    Article  CAS  Google Scholar 

  • Ulčinas A, Butler M, Heppenstall-Butler M, Singleton S, Miles M (2007) Direct observation of spherulitic growth stages of CaCO3 in a poly(acrylic acid)–chitosan system: in situ SPM study. J Cryst Growth 307:378–385

    Article  Google Scholar 

  • Vdović N, Kralj D (2000) Electrokinetic properties of spontaneously precipitated calcium carbonate polymorphs: the influence of organic substances. Colloids Surf A 161:499–505

    Article  Google Scholar 

  • Volkmer D, Harms M, Gower L, Ziegler A (2005) Morphosynthesis of nacre-type laminated caco3 thin films and coatings. Angew Chem Int Ed 44:639–644. doi:10.1002/anie.200461386

    Article  CAS  Google Scholar 

  • Watamura H, Sonobe Y, Hirasawa I (2014) Polyacrylic acid-assisted crystallization phenomena of carbonate crystals. Chem Eng Technol 37(8):1422–1426. doi:10.1002/ceat.201400017

    Article  CAS  Google Scholar 

  • Wei H, Shen Q, Zhao Y, Zhou Y, Wang D, Xu D (2005) On the crystallization of calciumcarbonate modulated by anionic surfactants. J Cryst Growth 279:439–446

    Article  CAS  Google Scholar 

  • Xu X, Han JK, Cho K (2004) Formation of amorphous calcium carbonate thin films and their role in biomineralization. Chem Mater 16:1740–1746

    Article  CAS  Google Scholar 

  • Yu J, Lei M, Cheng B, Zhao X (2004) Effects of PAA additive and temperature on morphology of calcium carbonate particles. J Solid State Chem 177:681–689

    Article  CAS  Google Scholar 

  • Zhang Z, Xie Y, Xu X, Pah H, Tang R (2012) Transformation of amorphous calcium carbonate into aragonite. J Cryst Growth 343:62–67

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Stora Enso Oyj is acknowledged for financial support of the project. Dr Anthony Bristow is thanked for linguistic revision of the work. Senior specialist Kimmo Velling is acknowledged for providing SEM images and for the TGA analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Teija Laukala.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Laukala, T., Kronlund, D., Heiskanen, I. et al. The effect of polyacrylic acid and reaction conditions on nanocluster formation of precipitated calcium carbonate on microcellulose. Cellulose 24, 2813–2826 (2017). https://doi.org/10.1007/s10570-017-1296-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-017-1296-8

Keywords

Navigation