Skip to main content
Log in

Physicochemical and thermal properties of lignocellulosic fiber from sugar palm fibers: effect of treatment

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Sugar palm fiber (SPF) is one of the prospective fibers used to reinforce polymer composites. The aim of this study is to evaluate the physicochemical, thermal, and morphological properties of SPF after alkali and sea water treatments. The chemical constituents group and thermal stability of the SPF were determined using scanning electronic microscopy (SEM) along with energy dispersive X-ray spectroscopy and thermogravimetric analysis (TGA). Fourier transform infrared spectroscopy was carried out to detect the presence of functional groups in untreated and treated SPF. The SEM images after both treatments showed that the external surface of the fiber became clean as a result. However, the sea water treatment affected the fiber properties physically, while the alkali treatment affected it both physically and chemically by dissolving the hemicellulose in the fiber. The TGA results showed that untreated fiber is significantly more stable than treated fiber. In conclusion, the results show that the fiber surface treatment significantly affected the characterization of the fiber.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Acharya SK, Mishra P, Mehar SK (2011) Effect of surface treatment on the mechanical properties of bagasse fiber reinforced polymer composite. BioResources 6:3155–3165. doi:10.15376/biores.6.3.3155-3165

    CAS  Google Scholar 

  • AlMaadeed M, Kahraman R, Khanam PN, Al-Maadeed S (2013) Characterization of untreated and treated male and female date palm leaves. Mater Des 43:526–531. doi:10.1016/j.matdes.2012.07.028

    Article  CAS  Google Scholar 

  • Bachtiar D, Sapuan S, Hamdan M (2009) The influence of alkaline surface fibre treatment on the impact properties of sugar palm fibre-reinforced epoxy composites. Polym Plast Technol Eng 48:379–383. doi:10.1080/03602550902725373

    Article  CAS  Google Scholar 

  • Bachtiar D, Sapuan SM, Hamdan MM (2010) Flexural properties of alkaline treated sugar palm fibre reinforced epoxy composites. Int J Automot Mech Eng IJAME 1:79–90

    Article  CAS  Google Scholar 

  • Bachtiar D, Sapuan S, Khalina A, Zainudin E, Dahlan K (2012) The flexural, impact and thermal properties of untreated short sugar palm fibre reinforced high impact polystyrene(hips) composites. Polym Polym Compos 20:493–502

    CAS  Google Scholar 

  • Bachtiar D, Salit MS, Zainudin ES, Abdan K, Dahlan M, Zaman K (2013) Thermal properties of alkali-treated sugar palm fibre reinforced high impact polystyrene composites. Pertanika J Sci Technol 21:141–150

    Google Scholar 

  • Boeriu CG, Bravo D, Gosselink RJ, van Dam JE (2004) Characterisation of structure-dependent functional properties of lignin with infrared spectroscopy. Ind Crop Prod 20:205–218. doi:10.1016/j.indcrop.2004.04.022

    Article  CAS  Google Scholar 

  • Goriparthi BK, Suman K, Rao NM (2012) Effect of fiber surface treatments on mechanical and abrasive wear performance of polylactide/jute composites. Compos Part A Appl Sci Manuf 43:1800–1808. doi:10.1016/j.compositesa.2012.05.007

    Article  CAS  Google Scholar 

  • Haque MM-U, Maniruzzaman M, Reza MS (2016) Thermal and tensile mechanical behavior of polystyrene graft acetic anhydride-treated pulque fibers. J Nat Fibers 13:125–136. doi:10.1080/15440478.2014.984057

    Article  Google Scholar 

  • Ibrahim MS, Sapuan SM, Faieza AA (2012) Mechanical and thermal properties of composites from unsaturated polyester filled with oil palm ash. J Mech Eng Sci JMES 2:181–186

    Article  Google Scholar 

  • Ishak MR, Leman Z, Sapuan SM, Salleh MY, Misri S (2009) The effect of sea water treatment on the impact and flexural strength of sugar palm fibre reinforced epoxy composites. IJMME Malaysia 4:316–320

    Google Scholar 

  • Ishak MR, Leman Z, Sapuan SM, Rahman M, Anwar U (2012) Characterization of sugar palm (Arenga pinnata) fibres. J Therm Anal Calorim 109:981–989. doi:10.1007/s10973-011-1785-1

    Article  CAS  Google Scholar 

  • Ishak MR, Leman Z, Sapuan SM, Rahman M, Anwar U (2013a) IFSS, TG, FT-IR spectra of impregnated sugar palm (Arenga pinnata) fibres and mechanical properties of their composites. J Therm Anal Calorim 111:1375–1383. doi:10.1007/s10973-012-2457-5

    Article  CAS  Google Scholar 

  • Ishak MR, Leman Z, Sapuan SM, Rahman M, Anwar U (2013b) Impregnation modification of sugar palm fibres with phenol formaldehyde and unsaturated polyester. Fiber Polym 14:250–257. doi:10.1007/s12221-013-0250-0

    Article  CAS  Google Scholar 

  • Ishak MR, Sapuan SM, Leman Z, Rahman M, Anwar U, Siregar J (2013c) Sugar palm (Arenga pinnata): its fibres, polymers and composites. Carbohydr Polym 91:699–710. doi:10.1016/j.carbpol.2012.07.073

    Article  CAS  Google Scholar 

  • Joseph S, Sreekala M, Thomas S (2008) Effect of chemical modifications on the thermal stability and degradation of banana fiber and banana fiber-reinforced phenol formaldehyde composites. J Appl Polym Sci 110:2305–2314. doi:10.1002/app.27648

    Article  CAS  Google Scholar 

  • Khan GA, Shaikh H, Alam MS, Gafur MA, Al-Zahrani SM (2015) Effect of chemical treatments on the physical properties of non-woven jute/PLA biocomposites. BioResources 10:7386–7404. doi:10.15376/biores.10.4.7386-7404

    Article  CAS  Google Scholar 

  • Leman Z, Sapuan S, Azwan M, Ahmad M, Maleque M (2008) The effect of environmental treatments on fiber surface properties and tensile strength of sugar palm fiber-reinforced epoxy composites. Polym Plast Technol Eng 47:606–612. doi:10.1080/03602550802059451

    Article  CAS  Google Scholar 

  • Liu Z, Fei B (2013) Characteristics of moso bamboo with chemical pretreatment. In: Chandel AK, da Silva SS (eds) Sustainable degradation of lignocellulosic biomass-techniques, applications and commercialization. InTech, Croatia, pp 3–14

    Google Scholar 

  • Luo Huachao L, Jing RS, Guizhen F, Guiquan J (2015) Studies of polyvinyl alcohol/alkali lignin/silica composite foam material (plcfm). BioResources 10:5961–5973. doi:10.15376/biores.10.3.5961-5973

    Google Scholar 

  • Mohammed L, Ansari MN, Pua G, Jawaid M, Islam MS (2015) A review on natural fiber reinforced polymer composite and its applications. Int J Polym Sci. doi:10.1155/2015/243947

    Google Scholar 

  • Obasi H, Iheaturu N, Onuoha F, Chike-Onyegbula C, Akanbi M, Eze V (2014) Influence of alkali treatment and fibre content on the properties of oil palm press fibre reinforced epoxy biocomposites. Am J Eng Res AJER 3:117–123

    Google Scholar 

  • Paluvai NR, Mohanty S, Nayak S (2015) Studies on thermal degradation and flame retardant behavior of the sisal fiber reinforced unsaturated polyester toughened epoxy nanocomposites. J Appl Polym Sci. doi:10.1002/app.42068

    Google Scholar 

  • Pickering K, Efendy MA, Le T (2015) A review of recent developments in natural fibre composites and their mechanical performance. Compos Part A Appl Sci. doi:10.1016/j.compositesa.2015.08.038

    Google Scholar 

  • Przybylak M, Maciejewski H, Dutkiewicz A, Dąbek I, Nowicki M (2016) Fabrication of superhydrophobic cotton fabrics by a simple chemical modification. Cellulose. doi:10.1007/s10570-016-0940-z

    Google Scholar 

  • Rajkumar R, Manikandan A, Saravanakumar SS (2016) Physicochemical properties of alkali treated new cellulosic fiber from cotton shell. Int J Polym Anal Charact 1:1–6. doi:10.1080/1023666X.2016.1160509

    Google Scholar 

  • Rashid B, Lemanl Z, Jawaid M, Ghazali MJ, Ishak MR (2016) The mechanical performance of sugarpalm fibres reinforced phenolic composites. Int J Precis Eng Manuf 17(8):1–8

    Article  Google Scholar 

  • Razali N, Salit MS, Jawaid M, Ishak MR, Lazim Y (2015) A study on chemical composition, physical, tensile, morphological, and thermal properties of roselle fibre: effect of fibre maturity. BioResources 10:1803–1824. doi:10.15376/biores.10.1.1803-1824

    Article  CAS  Google Scholar 

  • Reddy N, Yang Y (2015) Biocomposites using lignocellulosic agricultural residues as reinforcement· In: Innovative biofibers from renewable resources. Springer, Heidelberg, pp 391–417. doi:10.1007/978-3-662-45136-6_68

  • Rudnik E (2007) Thermal properties of biocomposites. J Therm Anal Calorim 88:495–498. doi:10.1007/s10973-006-8127-8

    Article  CAS  Google Scholar 

  • Saba N, Paridah M, Jawaid M, Abdan K, Ibrahim N (2015) Potential utilization of kenaf biomass in different applications. In: Agricultural biomass based potential materials. Springer, Switzerland, pp 1–34. doi: 10.1007/978-3-319-13847-3_1

  • Sahari J, Sapuan S, Ismarrubie Z, Rahman M (2012) Physical and chemical properties of different morphological parts of sugar palm fibres. Fibres Text East Eur 91:21–24

    Google Scholar 

  • Sanyang M, Sapuan S, Jawaid M, Ishak M, Sahari J (2016) Recent developments in sugar palm (Arenga pinnata) based biocomposites and their potential industrial applications: a review. Renew Sust Energy Rev 54:533–549. doi:10.1016/j.rser.2015.10.037

    Article  CAS  Google Scholar 

  • Sathishkumar T, Navaneethakrishnan P, Shankar S, Rajasekar R, Rajini N (2013) Characterization of natural fiber and composites—a review. J Reinf Plast Compos 32:1457–1476

    Article  Google Scholar 

  • Sutikno M, Marwoto P, Rustad S (2010) The mechanical properties of carbonized coconut char powder-based friction materials. Carbon 48:3616–3620. doi:10.1016/j.carbon.2010.06.015

    Article  CAS  Google Scholar 

  • Thakur MK, Rana AK, Liping Y, Singha AS, Thakur VK (2015) Surface modification of biopolymers. In: Thakur VK, Singha AS (eds) Surface modification of biopolymers. Wiley, Hoboken, NJ. doi:10.1002/9781119044901.ch1

  • Wei C, Zeng M, Xiong X, Liu H, Luo K, Liu T (2015) Friction properties of sisal fiber/nano-silica reinforced phenol formaldehyde composites. Carbon 36:433–438. doi:10.1002/pc.22957

    CAS  Google Scholar 

  • Yusriah L, Sapuan S, Zainudin ES, Mariatti M (2014) Characterization of physical, mechanical, thermal and morphological properties of agro-waste betel nut (Areca catechu) husk fibre. J Clean Prod 72:174–180. doi:10.1016/j.jclepro.2014.02.025

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful for the financial support from Universiti Putra Malaysia via grant no. GP-IPS/2014/9447200. The authors would also like to thank the Ministry of Higher Education and Research of Iraq and the Institute of Technology, Middle Technical University, Baghdad, for the scholarship granted to the corresponding author.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bushra Rashid.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rashid, B., Leman, Z., Jawaid, M. et al. Physicochemical and thermal properties of lignocellulosic fiber from sugar palm fibers: effect of treatment. Cellulose 23, 2905–2916 (2016). https://doi.org/10.1007/s10570-016-1005-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-016-1005-z

Keywords

Navigation