Skip to main content
Log in

Residual lignin inhibits thermal degradation of cellulosic fiber sheets

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

The market for cellulosic fiber based food packaging applications is growing together with the importance of improving the thermal durability of these fibers. To shed light on this, we investigated the role of residual lignin in pulp on the thermal stability of refined pulp sheets. The unbleached, oxygen delignified, and fully bleached pulp sheets were studied after four separate refining degrees. Comparison by Gurley air resistance, Bendtsen porosity, and the oxygen transmission rate tests showed that lignin containing sheets had better air and oxygen barrier properties than fully bleached sheets. Sheet density and light scattering coefficient measurements further confirmed that the lignin containing pulps underwent more intense fibrillation upon refining that changed the barrier properties of the sheets. Thermal treatments (at 225 °C, 20 and 60 min, in water vapor atmospheres of 1 and 75 v/v %) were applied to determine the thermal durability of the sheets. The results revealed that the residual lignin in pulps improved the thermal stability of the pulp sheets in the hot humid conditions. This effect was systematically studied by tensile strength, brightness, and light absorption coefficient measurements. The intrinsic viscosity results support the findings and suggest that lignin is able to hinder the thermal degradation of pulp polysaccharides. In spite of the fact that lignin is known to enhance the thermal yellowing of paper, no significant discoloration of the pulp sheets containing residual lignin was observed in the hot humid conditions (75 v/v %). Our results support the idea of lignin strengthening the thermal durability of paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Andersson C (2008) New ways to enhance the functionality of paperboard by surface treatment—a review. Pack Technol Sci 21:339–373. doi:10.1002/pts.823

    Article  CAS  Google Scholar 

  • Arshanitsa A, Ponomarenko J, Dizhbite T, Andersone A, Gosselink RJA, Van Der Putten J, Lauberts M, Telysheva G (2013) Fractionation of technical lignins as a tool for improvement of their antioxidant properties. J Anal Appl Pyrolysis 103:78–85. doi:10.1016/j.jaap.2012.12.023

    Article  CAS  Google Scholar 

  • Baptista C, Robert D, Duarte AP (2008) Relationship between lignin structure and delignification degree in Pinus pinaster kraft pulps. Bioresour Technol 99:2349–2356. doi:10.1016/j.biortech.2007.05.012

    Article  CAS  Google Scholar 

  • Beyer M, Lind A, Koch H, Fischer K (1999) Heat-induced yellowing of TCF-bleached sulphite pulps—mechanistic aspects and factors that influence that process. J Pulp Pap Sci 25:47–51

    CAS  Google Scholar 

  • Beyer M, Koch H, Fischer K (2006) Role of hemicelluloses in the formation of chromophores during heat treatment of bleached chemical pulps. Macromol Sympos 232:98–106. doi:10.1002/masy.200551412

    Article  CAS  Google Scholar 

  • Boeva R, Radeva G, Hinkov P, Hinkov E (2012) Thermal ageing of different kinds of fiber materials: a kinetic study. J Univ Chem Technol Met 47:37–42

    CAS  Google Scholar 

  • Borrega M, Tolonen LK, Bardot F, Testova L, Sixta H (2013) Potential of hot water extraction of birch wood to produce high-purity dissolving pulp after alkaline pulping. Bioresour Technol 135:665–671. doi:10.1016/j.biortech.2012.11.107

    Article  CAS  Google Scholar 

  • Brebu M, Vasile C (2010) Thermal degradation of lignin—a review. Cell Chem Technol 44:353–363

    CAS  Google Scholar 

  • Castle L, Jickells SM, Gilbert J, Harrison N (1990) Migration testing of plastics and microwave-active materials for high-temperature food-use applications. Food Addit Contam 7:779–797. doi:10.1080/02652039009373940

    Article  CAS  Google Scholar 

  • Chirat C, De La Chapelle V (1999) Heat- and light-induced brightness reversion of bleached chemical pulps. J Pulp Pap Sci 25:201–205

    CAS  Google Scholar 

  • Cui C, Sadeghifar H, Sen S, Argyropoulos DS (2013) Toward thermoplastic lignin polymers; part II: thermal and polymer characteristics of kraft lignin and derivatives. BioResources 8:864–886

    Google Scholar 

  • Dizhbite T, Telysheva G, Jurkjane V, Viesturs U (2004) Characterization of the radical scavenging activity of lignins—natural antioxidants. Bioresour Technol 95:309–317. doi:10.1016/j.biortech.2004.02.024

    Article  CAS  Google Scholar 

  • Fardim P, Durán N (2003) Modification of fibre surfaces during pulping and refining as analysed by SEM, XPS and ToF-SIMS. Colloids Surf A Physicochem Eng Asp 223:263–276. doi:10.1016/S0927-7757(03)00149-3

    Article  CAS  Google Scholar 

  • Fenner RA, Lephardt JO (1981) Examination of the thermal decomposition of Kraft pine lignin by Fourier transform infrared evolved gas analysis. J Agric Food Chem 29:846–849

    Article  CAS  Google Scholar 

  • Ferrer A, Quintana E, Filpponen I, Solala I, Vidal T, Rodríguez A, Laine J, Rojas OJ (2012) Effect of residual lignin and heteropolysaccharides in nanofibrillar cellulose and nanopaper from wood fibers. Cellulose 19:2179–2193. doi:10.1007/s10570-012-9788-z

    Article  CAS  Google Scholar 

  • Gierer J (1980) Chemical aspects of kraft pulping. Wood Sci Technol 14:241–266. doi:10.1007/BF00383453

    Article  CAS  Google Scholar 

  • Giertz HW (1957) The effects of beating on individual fibres, fundamentals of papermaking fibres. Transactions of the 1st fundamental research symposium, Cambridge, pp 389–409

  • Giertz HW (1964) Contribution to the theory of tensile strength. In: Proceedings of European TAPPI conference on beating, Venice, Italy, pp 39–47

  • Granström A, Eriksson T, Gellerstedt G, Rööst C, Larsson P (2001) Variables affecting the thermal yellowing of TCF-bleached birch kraft pulps. Nor Pulp Pap Res J 16:18–23

    Article  Google Scholar 

  • Gurnagul N, Page DH, Paice MG (1992) The effect of cellulose degradation on the strength of wood pulp fibers. Nord Pulp Pap Res J 7:152–154

    Article  CAS  Google Scholar 

  • Hill DJT, Le TT, Darveniza M, Saha T (1995) A study of degradation of cellulosic insulation materials in a power transformer. Part 2: tensile strength of cellulose insulation paper. Polym Degrad Stab 49:429–435. doi:10.1016/0141-3910(95)00100-Z

    Article  CAS  Google Scholar 

  • Howard RC, Bichard W (1992) Basic effects of recycling on pulp properties. J Pulp Pap Sci 18:J151–J159

    CAS  Google Scholar 

  • Jakab E (1997) Thermal decomposition of wood and cellulose in the presence of solvent vapors. Ind Eng Chem Res 36:2087–2095

    Article  CAS  Google Scholar 

  • Johansson C, Bras J, Mondragon I, Nechita P, Plackett D, Šimon P, Svetec DG, Virtanen S, Baschetti MG, Breen C, Clegg F, Aucejo S (2012) Renewable fibers and bio-based materials for packaging applications—a review of recent developments. BioResources 7:2506–2552

    Article  Google Scholar 

  • Kačík F, Kačíková D, Jablonský M, Katuščák S (2009) Cellulose degradation in newsprint paper ageing. Polym Degrad Stab 94:1509–1514. doi:10.1016/j.polymdegradstab.2009.04.033

    Article  CAS  Google Scholar 

  • Kasaai MR (2002) Comparison of various solvents for determination of intrinsic viscosity and viscometric constants for cellulose. J Appl Polym Sci 86:2189–2193. doi:10.1002/app.11164

    Article  CAS  Google Scholar 

  • Kim H-S, Kim S, Kim H-J, Yang H-S (2006) Thermal properties of bio-flour-filled polyolefin composites with different compatibilizing agent type and content. Thermochim Acta 451:181–188. doi:10.1016/j.tca.2006.09.013

    Article  CAS  Google Scholar 

  • Kjellgren H, Gällstedt M, Engström G, Järnström L (2006) Barrier and surface properties of chitosan-coated greaseproof paper. Carbohydr Polym 65:453–460. doi:10.1016/j.carbpol.2006.02.005

    Article  CAS  Google Scholar 

  • Koch G (2008) Raw Material for Pulp. In: Sixta H (ed) Hand book of pulp, Volume 1. WILEY-VCH, Weinheim, pp 21-68. DOI: 10.1002/9783527619887.ch2

  • Laine J, Stenius P, Carlsson G, Ström G (1996) The effect of ECF and TCF bleaching on the surface chemical composition of kraft pulp as determined by ESCA. Nord Pulp Pap Res J 11:201–210

    Article  CAS  Google Scholar 

  • Logenius L, Friman L, Agnemo R (2008) The influence of temperature and moisture on the optical properties of cellulose in the presence of metal chlorides and glucuronic acid. Nord Pulp Pap Res J 23:72–80

    Article  CAS  Google Scholar 

  • Łojewska J, Miśkowiec P, Łojewski T, Proniewicz LM (2005) Cellulose oxidative and hydrolytic degradation: in situ FTIR approach. Polym Degrad Stab 88:512–520

    Article  CAS  Google Scholar 

  • Łojewski T, Ziȩba K, Knapik A, Bagniuk J, Lubańska A, Łojewska J (2010) Evaluating paper degradation progress. Cross-linking between chromatographic, spectroscopic and chemical results. Appl Phys A 100:809–821. doi:10.1007/s00339-010-5657-5

    Article  CAS  Google Scholar 

  • Mancera C, El Mansouri N-E, Vilaseca F, Ferrando F, Salvado J (2011) The effect of lignin as a natural adhesive on the physico-mechanical properties of vitis vinifera fiberboards. BioResources 6:2851–2860

    CAS  Google Scholar 

  • Matsuoka S, Kawamoto H, Saka S (2011) Reducing end-group of cellulose as a reactive site for thermal discoloration. Polym Degrad Stab 96:1242–1247. doi:10.1016/j.polymdegradstab.2011.04.009

    Article  CAS  Google Scholar 

  • Nuopponen M, Vuorinen T, Jämsä S, Viitaniemi P (2004) Thermal modifications in softwood studied by FT-IR and UV resonance Raman spectroscopies. J Wood Chem Technol 24:13–26. doi:10.1081/WCT-120035941

    Article  CAS  Google Scholar 

  • Peelman N, Ragaert P, De Meulenaer B, Adons D, Peeters R, Cardon L, Van Impe F, Devlieghere F (2013) Application of bioplastics for food packaging. Trends Food Sci Tech 32:128–141. doi:10.1016/j.tifs.2013.06.003

    Article  CAS  Google Scholar 

  • Rojo E, Peresin MS, Sampson WW, Hoeger IC, Vartiainen J, Laine J, Rojas OJ (2015) Comprehensive elucidation of the effect of residual lignin on the physical, barrier, mechanical and surface properties of nanocellulose films. Green Chem 53:345–355. doi:10.1039/c4gc02398f

    Google Scholar 

  • Schmidt JA, Rye CS, Gurnagul N (1995) Lignin inhibits autoxidative degradation of cellulose. Polym Degrad Stab 49:291–297

    Article  CAS  Google Scholar 

  • Seth RS, Page DH (1996) The problem of using Page’s equation to determine loss in shear strength of fiber-fiber bonds upon pulp drying. Tappi J 79:206–210

    CAS  Google Scholar 

  • Shao Z, Li K (2006) The effect of fiber surface lignin on interfiber bonding. J Wood Chem Technol 26:231–244. doi:10.1080/02773810601023438

    Article  CAS  Google Scholar 

  • Sivonen H, Nuopponen M, Maunu SL, Sundholm F, Vuorinen T (2003) Carbon-thirteen cross-polarization magic angle spinning nuclear magnetic resonance and Fourier transform infrared studies of thermally modified wood exposed to brown and soft rot fungi. Appl Spectrosc 57:266–273. doi:10.1366/000370203321558164

    Article  CAS  Google Scholar 

  • Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Templeton D, Crocker D (2011) Determination of structural carbohydrates and lignin in biomass. National Renewable Energy Laboratory, Golden

    Google Scholar 

  • Song YS, Begley T, Paquette K, Komolprasert V (2003) Effectiveness of polypropylene film as a barrier to migration from recycled paperboard packaging to fatty and high-moisture food. Food Addit Contam 20:875–883. doi:10.1080/02652030310001597592

    Article  CAS  Google Scholar 

  • Spence KL, Venditti RA, Habibi Y, Rojas OJ, Pawlak JJ (2010) The effect of chemical composition on microfibrillar cellulose films from wood pulps: mechanical processing and physical properties. Bioresour Technol 101:5961–5968. doi:10.1016/j.biortech.2010.02.104

    Article  CAS  Google Scholar 

  • Vainio AK, Paulapuro H (2007) Interfiber bonding and fiber segment activation in paper. BioResources 2:442–458

    CAS  Google Scholar 

  • Vänskä E, Vuorinen T (2015) Effect of cellulase-assisted refining on the thermal degradation of bleached high-density paper. Holzforschung 69:703–712. doi:10.1515/hf-2014-0194

    Article  CAS  Google Scholar 

  • Vänskä E, Luukka M, Solala I, Vuorinen T (2014) Effect of water vapor in air on thermal degradation of paper at high temperature. Polym Degrad Stab 99:283–289. doi:10.1016/j.polymdegradstab.2013.10.020

    Article  CAS  Google Scholar 

  • Vishtal A, Retulainen E (2012) Deep-drawing of paper and paperboard: the role of material properties. BioResources 7:4424–4450

    CAS  Google Scholar 

  • Wahlström T, Lundh A, Hansson T, Fellers C (2000) Biaxial straining of handsheets during drying - effect on delamination resistance. Nord Pulp Pap Res J 15:237–242

    Article  Google Scholar 

  • Zanoni B, Peri C, Bruno D (1995) Modelling of browning kinetics of bread crust during baking. Lebensm Wiss Technol 28:604–609. doi:10.1016/0023-6438(95)90008-X

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Mr. Esko Pekuri (Metsä Fibre Oy, Finland) for his expertise and support in assisting in the pulp refining. A particular thanks to Mrs. Ritva Kivelä (Aalto University) for obtaining the AFM images. The financial support of Metsä Fibre Oy, FIBIC Ltd. (EffFibre Program) and TEKES (the Finnish Funding Agency for Technology and Innovation), are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emilia Vänskä.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vänskä, E., Vihelä, T., Peresin, M.S. et al. Residual lignin inhibits thermal degradation of cellulosic fiber sheets. Cellulose 23, 199–212 (2016). https://doi.org/10.1007/s10570-015-0791-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-015-0791-z

Keywords

Navigation