Skip to main content
Log in

Effects of periodate oxidation on cellulose polymorphs

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Since periodate oxidation selectively creates (masked) aldehyde groups that can serve as anchors for further modification steps, this method is suitable for modifying and functionalizing cellulose. Although numerous studies deal with that topic, there are still knowledge gaps regarding periodate oxidation. In our study, we focused on examining how the type of cellulose allomorph influences the reaction. We compared the oxidation of two allomorphs, namely cellulose I, cellulose II and mixtures of cellulose I and II, and examined changes in crystallinity and thermal decomposition behavior. Generally, periodate oxidation proceeded faster in the case of cellulose II samples, followed by the mixed cellulose I/II samples; cellulose I was the slowest. Based on our results, the major influencing factor is the overall crystallinity of the sample. The influence of the allomorph was minor. Crystallinity decreased upon oxidation, but no significant differences were found between the different cellulose polymorphs. Following the crystallinity during the oxidation reaction proved to be very difficult. Determining crystallinity with solid-state nuclear magnetic resonance (NMR) was largely hampered by superposition with new resonances that interfere with crystallinity determination. Structural changes during oxidation as evident from solid-state NMR are discussed in detail. Alternative methods for crystallinity analysis, such as near infrared spectroscopy, attenuated total reflection infrared spectroscopy, and Raman spectroscopy, had similar problems but to a lesser extent, with Raman being the method of choice. Thermogravimetric analysis showed thermal decomposition of oxidized cellulose I and II to be similar. An anomaly was found in the case of oxidized viscose fibers. Slightly oxidized samples showed increased mass loss in the temperature range up to 360 °C whereas higher oxidized samples and all pulp samples showed decreased mass loss.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Aggarwal P, Dollimore D, Heon K (1997) Comparative thermal analysis study of two biopolymers, starch and cellulose. J Therm Anal 50(1–2):7–17. doi:10.1007/bf01979545

    Article  CAS  Google Scholar 

  • Ahn K, Rosenau T, Potthast A (2013) The influence of alkaline reserve on the aging behavior of book papers. Cellulose 20(4):1989–2001. doi:10.1007/s10570-013-9978-3

    Article  CAS  Google Scholar 

  • Ant-Wuorinen O (1955) Evaluation of the crystallinity of cellulose from X-ray diffraction pictures. Pap Puu 37:335–368

    CAS  Google Scholar 

  • Baldinger T, Moosbauer J, Sixta H (2000) Supermolecular structure of cellulosic materials by Fourier-transform infrared spectroscopy (FTIR) calibrated by WAXS and 13C NMR. Lenzing Ber 79:15–17

    CAS  Google Scholar 

  • Basch A, Wasserman T, Lewin M (1974) Near-infrared spectrum of cellulose: a new method for obtaining crystallinity ratios. J Polym Sci A-1: Polym Chem 12(6):1143–1150. doi:10.1002/pol.1974.170120601

    CAS  Google Scholar 

  • Calvini P, Conio G, Princi E, Vicini S, Pedemonte E (2006a) Viscometric determination of dialdehyde content in periodate oxycellulose Part II. Topochemistry of oxidation. Cellulose 13(5):571–579. doi:10.1007/s10570-005-9035-y

    Article  CAS  Google Scholar 

  • Calvini P, Gorassini A, Luciano G, Franceschi E (2006b) FTIR and WAXS analysis of periodate oxycellulose: evidence for a cluster mechanism of oxidation. Vib Spectrosc 40(2):177–183. doi:10.1016/j.vibspec.2005.08.004

    Article  CAS  Google Scholar 

  • Ciolacu D, Ciolacu F, Popa VI (2011) Amorphous cellulose: structure and characterization. Cell Chem Technol 45(1–2):13–21

    CAS  Google Scholar 

  • Coseri S, Biliuta G, Simionescu BC, Stana-Kleinschek K, Ribitsch V, Harabagiu V (2013) Oxidized cellulose—survey of the most recent achievements. Carbohydr Polym 93(1):207–215. doi:10.1016/j.carbpol.2012.03.086

    Article  CAS  Google Scholar 

  • Dash R, Elder T, Ragauskas A (2012) Grafting of model primary amine compounds to cellulose nanowhiskers through periodate oxidation. Cellulose 19(6):2069–2079. doi:10.1007/s10570-012-9769-2

    Article  CAS  Google Scholar 

  • Fan QG, Lewis DM, Tapley KN (2001) Characterization of cellulose aldehyde using Fourier transform infrared spectroscopy. J Appl Polym Sci 82(5):1195–1202. doi:10.1002/app.1953

    Article  CAS  Google Scholar 

  • Fink HP, Fanter D, Philipp B (1985) Röntgen-Weitwinkeluntersuchungen zur übermolekularen Struktur beim Cellulose-I–II-Phasenübergang. Acta Polym 36(1):1–8. doi:10.1002/actp.1985.010360101

    Article  CAS  Google Scholar 

  • Garvey CJ, Parker IH, Simon GP (2005) On the interpretation of X-ray diffraction powder patterns in terms of the nanostructure of cellulose I fibres. Macromol Chem Phys 206(15):1568–1575. doi:10.1002/macp.200500008

    Article  CAS  Google Scholar 

  • Henniges U, Kostic M, Borgards A, Rosenau T, Potthast A (2011) Dissolution behavior of different celluloses. Biomacromolecules 12(4):871–879. doi:10.1021/bm101555q

    Article  CAS  Google Scholar 

  • Henniges U, Okubayashi S, Rosenau T, Potthast A (2012) Irradiation of cellulosic pulps: understanding its impact on cellulose oxidation. Biomacromolecules 13(12):4171–4178. doi:10.1021/bm3014457

    CAS  Google Scholar 

  • Hermans PH, Weidinger A (1948) Quantitative X-ray investigations on the crystallinity of cellulose fibers. A background analysis. J Appl Phys 19(5):491–506. doi:10.1063/1.1698162

    Article  CAS  Google Scholar 

  • Hudson BG, Barker R (1967) The overoxidation of carbohydrates with sodium metaperiodate. J Org Chem 32(7):2101–2109. doi:10.1021/jo01282a010

    Article  CAS  Google Scholar 

  • Isogai A, Kato Y (1998) Preparation of polyuronic acid from cellulose by TEMPO-mediated oxidation. Cellulose 5(3):153–164. doi:10.1023/a:1009208603673

    Article  CAS  Google Scholar 

  • Jackson EL, Hudson CS (1938) The structure of the products of the periodic acid oxidation of starch and cellulose. J Am Chem Soc 60(5):989–991. doi:10.1021/ja01272a001

    Article  CAS  Google Scholar 

  • Jayme G, Maris S (1944) Über die Oxydation der Cellulose mit gepufferter Perjodsäure und die Gewinnung von Abbauprodukten der oxydierten Cellulose. Berichte der deutschen chemischen Gesellschaft (A and B Series) 77(6–7):383–392. doi:10.1002/cber.19440770603

    Article  Google Scholar 

  • Kim U-J, Kuga S (2001) Thermal decomposition of dialdehyde cellulose and its nitrogen-containing derivatives. Thermochim Acta 369(1–2):79–85. doi:10.1016/S0040-6031(00)00734-6

    Article  CAS  Google Scholar 

  • Kim U-J, Kuga S, Wada M, Okano T (1999) Anomaly in periodate oxidation of crystalline cellulose. Am Chem Soc, pp CELL-041

  • Kim U-J, Kuga S, Wada M, Okano T, Kondo T (2000) Periodate oxidation of crystalline cellulose. Biomacromolecules 1(3):488–492. doi:10.1021/bm0000337

    Article  CAS  Google Scholar 

  • Larsson PT, Wickholm K, Iversen T (1997) A CP/MAS13C NMR investigation of molecular ordering in celluloses. Carbohydr Res 302(1–2):19–25. doi:10.1016/S0008-6215(97)00130-4

    Article  CAS  Google Scholar 

  • Larsson PT, Hult E-L, Wickholm K, Pettersson E, Iversen T (1999) CP/MAS 13C-NMR spectroscopy applied to structure and interaction studies on cellulose I. Solid State Nucl Magn Reson 15(1):31–40. doi:10.1016/S0926-2040(99)00044-2

    Article  CAS  Google Scholar 

  • Li H, Yang Y, Wen Y, Liu L (2007) A mechanism study on preparation of rayon based carbon fibers with (NH4)2SO4/NH4Cl/organosilicon composite catalyst system. Compos Sci Technol 67(13):2675–2682. doi:10.1016/j.compscitech.2007.03.008

    Article  CAS  Google Scholar 

  • Liu X, Wang L, Song X, Song H, Zhao JR, Wang S (2012) A kinetic model for oxidative degradation of bagasse pulp fiber by sodium periodate. Carbohydr Polym 90(1):218–223. doi:10.1016/j.carbpol.2012.05.027

    Article  CAS  Google Scholar 

  • Maekawa E, Kosaki T, Koshijima T (1986) Periodate oxidation of mercerized cellulose and regenerated cellulose. Wood Res: Bull Wood Res Inst Kyoto Univ 73:44–49

    CAS  Google Scholar 

  • Malaprade L (1928) Action of polyalcohols on periodic acid. Analytical application. Bull Soc Chim Fr 43:683–696

    CAS  Google Scholar 

  • Margutti S, Vicini S, Proietti N, Capitani D, Conio G, Pedemonte E, Segre AL (2002) Physical–chemical characterisation of acrylic polymers grafted on cellulose. Polymer 43(23):6183–6194. doi:10.1016/S0032-3861(02)00533-5

    Article  CAS  Google Scholar 

  • Massiot D, Fayon F, Capron M, King I, Le Calvé S, Alonso B, Durand J-O, Bujoli B, Gan Z, Hoatson G (2002) Modelling one- and two-dimensional solid-state NMR spectra. Magn Reson Chem 40(1):70–76. doi:10.1002/mrc.984

    Article  CAS  Google Scholar 

  • Meng S, Feng Y, Liang Z, Fu Q, Zhang E (2005) Oxidizing cellulose to 2,3-dialdehyde cellulose by sodium periodate. Trans Tianjin Univ 11:250–254

    CAS  Google Scholar 

  • Nelson ML, O’Connor RT (1964) Relation of certain infrared bands to cellulose crystallinity and crystal lattice type. Part II. A new infrared ratio for estimation of crystallinity in celluloses I and II. J Appl Polym Sci 8(3):1325–1341. doi:10.1002/app.1964.070080323

    Article  CAS  Google Scholar 

  • Newman RH (2004) Homogeneity in cellulose crystallinity between samples of Pinus radiata wood. Holzforschung 58(1):91–96. doi:10.1515/HF.2004.012

    Article  CAS  Google Scholar 

  • Park S, Johnson D, Ishizawa C, Parilla P, Davis M (2009) Measuring the crystallinity index of cellulose by solid state 13C nuclear magnetic resonance. Cellulose 16(4):641–647. doi:10.1007/s10570-009-9321-1

    Article  CAS  Google Scholar 

  • Park S, Baker JO, Himmel ME, Parilla PA, Johnson DK (2010) Cellulose crystallinity index: measurement techniques and their impact on interpreting cellulase performance. Biotechnol Biofuels. doi:10.1186/1754-6834-3-10

    Google Scholar 

  • Pataky B, Perczel S, Sachetto JP (1973) The structural characterization of oxidized celluloses by thermogravimetric analysis. J Polym Sci Polym Symp 43(1):267–275. doi:10.1002/polc.5070430123

    Article  Google Scholar 

  • Potthast A, Röhrling J, Rosenau T, Borgards A, Sixta H, Kosma P (2003) A novel method for the determination of carbonyl groups in cellulosics by fluorescence labeling. 3. Monitoring oxidative processes. Biomacromolecules 4(3):743–749. doi:10.1021/bm025759c

    Article  CAS  Google Scholar 

  • Potthast A, Kostic M, Schiehser S, Kosma P, Rosenau T (2007) Studies on oxidative modifications of cellulose in the periodate system: molecular weight distribution and carbonyl group profiles. Holzforschung 61(6):662–667. doi:10.1515/hf.2007.099

    Article  CAS  Google Scholar 

  • Proietti N, Capitani D, Pedemonte E, Blümich B, Segre AL (2004) Monitoring degradation in paper: non-invasive analysis by unilateral NMR. Part II. J Magn Reson 170(1):113–120. doi:10.1016/j.jmr.2004.06.006

    Article  CAS  Google Scholar 

  • Ranby BG (1952) The mercerisation of cellulose. I. A thermodynamic discussion. Acta Chem Scand 6:101–115. doi:10.3891/acta.chem.scand.06-0101

    Article  CAS  Google Scholar 

  • Röder T, Moosbauer J, Fasching M, Bohn A, Fink H-P, Baldinger T, Sixta H (2006a) Crystallinity determination of man-made cellulose fibers—comparison of analytical methods. Lenzing Ber 86:132–136

    Google Scholar 

  • Röder T, Moosbauer J, Fasching M, Bohn A, Fink H-P, Baldinger T, Sixta H (2006b) Crystallinity determination of native cellulose—comparison of analytical methods. Lenzing Ber 86:85–89

    Google Scholar 

  • Röhrling J, Potthast A, Lange T, Rosenau T, Adorjan I, Hofinger A, Kosma P (2002) Synthesis of oxidized methyl 4-O-methyl-β-d-glucopyranoside and methyl β-d-glucopyranosyl-(1 → 4)-β-d-glucopyranoside derivatives as substrates for fluorescence labeling reactions. Carbohydr Res 337(8):691–700. doi:10.1016/S0008-6215(02)00048-4

    Article  Google Scholar 

  • Rowland SP, Cousins ER (1966) Periodate oxidative decrystallization of cotton cellulose. J Polym Sci A-1: Polym Chem 4(4):793–799. doi:10.1002/pol.1966.150040406

    Article  CAS  Google Scholar 

  • Saito T, Isogai A (2004) TEMPO-mediated oxidation of native cellulose. The effect of oxidation conditions on chemical and crystal structures of the water-insoluble fractions. Biomacromolecules 5(5):1983–1989. doi:10.1021/bm0497769

    Article  CAS  Google Scholar 

  • Schenzel K, Fischer S (2004) Applications of FT Raman spectroscopy for characterization of cellulose. Lenzing Ber 83:67–70

    Google Scholar 

  • Schenzel K, Fischer S, Brendler E (2005) New method for determining the degree of cellulose I crystallinity by means of FT Raman spectroscopy. Cellulose 12(3):223–231. doi:10.1007/s10570-004-3885-6

    Article  CAS  Google Scholar 

  • Schwanninger M, Rodrigues J, Fackler K (2011) A review of band assignments in near infrared spectra of wood and wood components. J Near Infrared Spectrosc 19(5):287–308. doi:10.1255/jnirs.955

    Article  CAS  Google Scholar 

  • Sefain MZ, El-Kalyoubi SF (1984) Thermogravimetric studies of different celluloses. Thermochim Acta 75(1–2):107–113. doi:10.1016/0040-6031(84)85010-8

    Article  CAS  Google Scholar 

  • Segal L, Creely JJ, Martin AE, Conrad CM (1959) An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Text Res J 29(10):786–794. doi:10.1177/004051755902901003

    Article  CAS  Google Scholar 

  • Shafizadeh F (1982) Introduction to pyrolysis of biomass. J Anal Appl Pyrol 3(4):283–305. doi:10.1016/0165-2370(82)80017-X

    Article  CAS  Google Scholar 

  • Siller M, Ahn K, Pircher N, Rosenau T, Potthast A (2014) Dissolution of rayon fibers for size exclusion chromatography: a challenge. Cellulose 21(5):3291–3301. doi:10.1007/s10570-014-0356-6

    Article  CAS  Google Scholar 

  • Sirvio J, Hyvakko U, Liimatainen H, Niinimaki J, Hormi O (2011) Periodate oxidation of cellulose at elevated temperatures using metal salts as cellulose activators. Carbohydr Polym 83(3):1293–1297. doi:10.1016/j.carbpol.2010.09.036

    Article  CAS  Google Scholar 

  • Stefanovic B, Rosenau T, Potthast A (2013) Effect of sonochemical treatments on the integrity and oxidation state of cellulose. Carbohydr Polym 92(1):921–927. doi:10.1016/j.carbpol.2012.09.039

    Article  CAS  Google Scholar 

  • Symons MCR (1955) Evidence for formation of free-radical intermediates in some reactions involving periodate. J Chem Soc (Resumed). doi:10.1039/JR9550002794

    Google Scholar 

  • Tang MM, Bacon R (1964) Carbonization of cellulose fibers—I. Low temperature pyrolysis. Carbon 2(3):211–220. doi:10.1016/0008-6223(64)90035-1

    Article  CAS  Google Scholar 

  • Varma AJ, Chavan VB (1995a) A study of crystallinity changes in oxidised celluloses. Polym Degrad Stab 49(2):245–250. doi:10.1016/0141-3910(95)87006-7

    Article  CAS  Google Scholar 

  • Varma AJ, Chavan VB (1995b) Thermal properties of oxidized cellulose. Cellulose 2(1):41–49. doi:10.1007/BF00812771

    CAS  Google Scholar 

  • Varma AJ, Kulkarni MP (2002) Oxidation of cellulose under controlled conditions. Polym Degrad Stab 77(1):25–27. doi:10.1016/S0141-3910(02)00073-3

    Article  CAS  Google Scholar 

  • Varma AJ, Jamdade YK, Nadkarni VM (1985) Wide-angle X-ray diffraction study of the effect of periodate oxidation and thermal treatment on the structure of cellulose powder. Polym Degrad Stab 13(1):91–98. doi:10.1016/0141-3910(85)90135-1

    Article  CAS  Google Scholar 

  • Varma AJ, Chavan VB, Rajmohanan PR, Ganapathy S (1997) Some observations on the high-resolution solid-state CP-MAS 13C-NMR spectra of periodate-oxidised cellulose. Polym Degrad Stab 58(3):257–260. doi:10.1016/S0141-3910(97)00049-9

    Article  CAS  Google Scholar 

  • Vicini S, Princi E, Luciano G, Franceschi E, Pedemonte E, Oldak D, Kaczmarek H, Sionkowska A (2004) Thermal analysis and characterisation of cellulose oxidised with sodium methaperiodate. Thermochim Acta 418(1–2):123–130. doi:10.1016/j.tca.2003.11.049

    Article  CAS  Google Scholar 

  • Vonk C (1973) Computerization of Ruland’s X-ray method for determination of the crystallinity in polymers. J Appl Crystallogr 6(2):148–152. doi:10.1107/S0021889873008332

    Article  CAS  Google Scholar 

  • Whistler RL, Chang PK, Richards GN (1959) Alkaline degradation of periodate-oxidized starch. J Am Chem Soc 81(12):3133–3136. doi:10.1021/ja01521a054

    Article  CAS  Google Scholar 

  • Wickholm K, Larsson PT, Iversen T (1998) Assignment of non-crystalline forms in cellulose I by CP/MAS 13C NMR spectroscopy. Carbohydr Res 312(3):123–129. doi:10.1016/S0008-6215(98)00236-5

    Article  CAS  Google Scholar 

  • Xu YH, Huang C (2011) Effect of sodium periodate selective oxidation on crystallinity of cotton cellulose. Adv Mater Res. doi:10.4028/www.scientific.net/AMR.197-198.1201

  • Zuckerstätter G, Schild G, Wollboldt P, Roeder T, Weber HK, Sixta H (2009) The elucidation of cellulose supramolecular structure by 13C CP-MAS NMR. Lenzing Ber 87:38–46

    Google Scholar 

Download references

Acknowledgments

This work was funded by the Austrian Research Funding Association (FFG) under the scope of the COMET programs Process Analytical Chemistry (PAC) and Wood K plus with its industrial partner Kelheim Fibres GmbH. The FLIPPR research project and the companies and funding institution associated with it are gratefully acknowledged for financial support. We thank Dr. T. Röder, Lenzing AG, for support with the Raman analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antje Potthast.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 4853 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Siller, M., Amer, H., Bacher, M. et al. Effects of periodate oxidation on cellulose polymorphs. Cellulose 22, 2245–2261 (2015). https://doi.org/10.1007/s10570-015-0648-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-015-0648-5

Keywords

Navigation