Skip to main content
Log in

Untreated and alkali treated fibers from Alfa stem: effect of alkali treatment on structural, morphological and thermal features

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Alfa stems are rich in cellulose and they are an inexpensive, easily renewable source of natural fibers with the potential for polymer reinforcement. However, large amounts of non-cellulosic materials, surface impurities and low degrad ation temperature make natural fibers less attractive for reinforcement of polymeric materials, unless they can be modified in a proper way. In this paper, Alfa stems were treated with NaOH solution with two different concentrations (1 and 5 wt%). Raw and treated stems were crushed to obtain fibers. Stems and fibers were characterized by scanning electron microscopy (SEM) and optical microscopy, respectively. Their crystallinity index was determined by X-ray diffraction, thermal stability by thermogravimetry and structural change by FT-IR and 13C NMR spectroscopy. Comparison and analysis of results confirmed some thermal, structural and morphological changes of the fibers after treatment due to removal of some non-crystalline constituents from the plant. SEM showed rougher surfaces after alkalization. FT-IR and 13C NMR showed a gradual improvement in cellulose level by alkali treatment with increasing NaOH concentration. The crystallinity index and thermal stability of treated Alfa fibers were also found to be improved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abdelmouleh M, Boufi S, Belgacem MN, Dufresne A (2007) Short natural-fibre reinforced polyethylene and natural rubber composites: effect of silane coupling agents and fibres loading. Compos Sci Technol 67:1627–1639

    Article  CAS  Google Scholar 

  • Alvarez VA, Vazquez A (2006) Influence of fiber chemical modification procedure on the mechanical properties and water absorption of MaterBi-Y/sisal fiber composites. Compos Part A 37:1672–1680

  • Arrakhiz FZ, Elachaby M, Bouhfid R, Vaudreuil S, Essassi M, Qaiss A (2012a) Mechanical and thermal properties of polypropylene reinforced with Alfa fiber under different chemical treatment. Mater Des 35:318–322

    Article  CAS  Google Scholar 

  • Arrakhiz FZ, El Achaby M, Kakou AC, Vaudreuil S, Benmoussa K, BouhfidR Fassi-Fehri O, Qaiss A (2012b) Mechanical properties of high density polyethylene reinforced with chemically modified coir fibers: Impact of chemical treatments. Mater Des 37:379–383

    Article  CAS  Google Scholar 

  • Belhassen R, Boufia S, Vilaseca F, Lopez JP, Méndez JA, Franco E, Pèlach MA, Mutjé P (2008) Biocomposites based on Alfa fibers and starch-based biopolymer. Polym Adv Technol 20:1068–1075

    Article  Google Scholar 

  • Ben Brahim S, Ben Cheikh R (2007) Influence of fibre orientation and volume fraction on the tensile properties of unidirectional Alfa-polyester composite. Compos Sci Technol 67:140–147

    Article  CAS  Google Scholar 

  • Chowdhury MNK, Beg MDH, Khan MR, Mina MF (2013) Modification of oil palm empty fruit bunch fibers by nanoparticle impregnation and alkali treatment. Cellulose 20:1477–1490

    Article  CAS  Google Scholar 

  • Fiore V, Scalici T, Valenza A (2014) Characterization of a new natural fiber from Arundo donax L. as potential reinforcement of polymer composites. Carbohydr Polym 106:77–83

    Article  CAS  Google Scholar 

  • Focher B, Palma MT, Canetti M, Torri G, Cosentino C, Gastaldi G (2001) Structural differences between non wood plant celluloses: evidence from solid state NMR, vibrational spectroscopy and X-ray diffractometry. Ind Crops Prod 13:193–208

    Article  CAS  Google Scholar 

  • French AD (2014) Idealized powder diffraction patterns for cellulose polymorphs. Cellulose 21:885–896

    Article  CAS  Google Scholar 

  • French AD, Santiago Cintrón M (2013) Cellulose polymorphy, crystallite size, and the segal crystallinity index. Cellulose 20:583–588

    Article  CAS  Google Scholar 

  • Guptaa PK, Uniyala V, Naithanib S (2013) Polymorphic transformation of cellulose I to cellulose II by alkali pretreatment and urea as an additive. Carbohydr Polym 94:843–849

    Article  Google Scholar 

  • Hamzaa S, Saada H, Charrier B, Ayeda N, Charrier-El Bouhtoury F (2013) Physico-chemical characterization of Tunisian plant fibers and itsutilization as reinforcement for plaster based composites. Ind Crops Prod 49:357–365

    Article  Google Scholar 

  • Jayaramudu J, Guduri BR, Varada Rajulu A (2010) Characterization of new natural cellulosic fabric Grewia tilifolia. Carbohydr Polym 79:847–851

    Article  CAS  Google Scholar 

  • Jayaramudu J, Maity JA, Sadiku ER, Guduri BR, Varada Rajulu A, Ramana CHVV, Li R (2011) Structure and properties of new natural cellulose fabrics from Cordia dichotoma. Carbohydr Polym 86:1623–1629

    Article  CAS  Google Scholar 

  • Kabir MM, Wang H, Lau KT, Cardona F (2013) Effects of chemical treatments on hemp fibre structure. Appl Surf Sci 276:13–23

    Article  CAS  Google Scholar 

  • Kwon HJ, Sunthornvarabhas J, Park JW, Lee JH, Kim HJ, Piyachomkwan K, Sriroth K, Cho D (2014) Tensile properties of kenaf fiber and corn husk flour reinforced poly(lactic acid) hybrid bio-composites: role of aspect ratio of natural fibers. Compos Part B 56:232–237

    Article  CAS  Google Scholar 

  • Le Troedec M, Sedan D, Peyratout C, Bonnet JP, Smith A, Guinebretiere R, Gloaguen V, Krausz P (2008) Influence of various chemical treatments on the composition and structure of hemp fibres. Compos A 39:514–522

    Article  Google Scholar 

  • Liu W, Mohanty AK, Askeland P, Drzal LT, Misra M (2014) Influence of fiber surface treatment on properties of Indian grass fiber reinforced soy protein based biocomposites. Polymer 45:7589–7596

    Article  Google Scholar 

  • Lopattananon N, Panawarangkul K, Sahakaro K, Ellis B (2006) Performance of pineapple leaf fiber–natural rubber composites: the effect of fiber surface treatments. J Appl Polym Sci 102:1974–1984

    Article  CAS  Google Scholar 

  • Maghchiche A, Haouam A, Immirzi B (2013) Extraction and characterization of Algerian Alfa grass short fibers (Stipa Tenacissima). Chem Chem Technol 7:339–344

    CAS  Google Scholar 

  • Marrakchi Z, Khiari R, Oueslati H, Mauret E, Mhenni F (2011) Pulping and papermaking properties of Tunisian Alfa stems (Stipa tenacissima)—effects of refining process. Ind Crops Prod 34:1572–1582

    Article  CAS  Google Scholar 

  • Martins MA, Forato LA, Mattoso LHC, Colnago LA (2006) A solid state 13C high resolution NMR study of raw and chemically treated sisal fibers. Carbohydr Polym 64:126–133

    Article  Google Scholar 

  • Mwaikambo LY, Ansell MP (2002) Chemical modification of hemp, sisal, jute, and kapok fibers by alkalization. J Appl Polym Sci 84:2222–2234

    Article  CAS  Google Scholar 

  • Narendar R, Priya Dasan K (2014) Chemical treatments of coir pith: morphology, chemical composition, thermal and water retention behavior. Compos B 56:770–779

    Article  CAS  Google Scholar 

  • Oh SY, Yoo DI, Shin Y, Kim HC, Kim HY, Chung YS, Park WH, Youke JH (2005) Crystalline structure analysis of cellulose treated with sodium hydroxide and carbon dioxide by means of X-ray diffraction and FTIR spectroscopy. Carbohydr Res 340:2376–2391

    Article  CAS  Google Scholar 

  • Ouajai S, Shanks RA (2005) Composition, structure and thermal degradation of hemp cellulose after chemical treatments. Polym Degrad Stab 89:327–335

    Article  CAS  Google Scholar 

  • Oudiani AE, Chaabouni Y, Msahli S, Sakli F (2011) Crystal transition from cellulose I to cellulose II in NaOH treated Agave americana L. fibre. Carbohydr Polym 86:1221–1229

    Article  Google Scholar 

  • Paiva MC, Ammar I, Campos AR, Cheikh RB, Cunha AM (2007) Alfa fibres: mechanical, morphological and interfacial characterization. Compos Sci Technol 67:1132–1138

    Article  CAS  Google Scholar 

  • Popescua CM, Larsson PT, Olaru N, Vasile C (2012) Spectroscopic study of acetylated kraft pulp fibers. Carbohydr Polym 88:530–536

    Article  Google Scholar 

  • Ray D, Sarkar BK, Basak RK, Rana AK (2002) Study of the thermal behavior of alkali-treated Jute fibers. J Appl Polym Sci 85:2594–2599

    Article  CAS  Google Scholar 

  • Reddy KO, Maheswari CU, Shukla M, Rajulu AV (2012) Chemical composition and structural characterization of Napier grass fibers. Mater Lett 67:35–38

    Article  CAS  Google Scholar 

  • Robinson IM, Robinson JM (1994) The effect of fibre aspect ratio on the stiffness of discontinuous fibre-reinforced composites. Composites 25:499–503

    Article  CAS  Google Scholar 

  • Segal L, Creely JJ, Martin AE, Conrad CM (1959) An empirical method for estimating the degree of cristallinity of native cellulose using the X-Ray diffractometer. Text Res J 29:786–794

    Article  CAS  Google Scholar 

  • Silva MC, Lopes OR, Colodette JL, Porto AO, Rieumont J, Chaussy D, Belgacem MN, Silva GG (2008) Characterization of three non-product materials from a bleached eucalyptus kraft pulp mill, in view of valorizing them as a source of cellulose fibres. Ind Crops Prod 27:288–295

    Article  CAS  Google Scholar 

  • Sinha E, Rout SK (2008) Influence of fibre-surface treatment on structural, thermal and mechanical properties of jute. J Mater Sci 43:2590–2601

    Article  CAS  Google Scholar 

  • Trache D, Donnot A, Khimeche K, Benelmir R, Brosse N (2014) Physico-chemical properties and thermal stability of microcrystallinecellulose isolated from Alfa fibres. Carbohydr Polym 104:223–230

    Article  CAS  Google Scholar 

  • Yan L, Guozhu L, Yunling Z, Qingjun Z, Xiaoxue L (2014) Preparation and characterization of cellulose nanofibers from partly mercerized cotton by mixed acid hydrolysis. Cellulose 21:301–309

    Article  Google Scholar 

  • Yue Y, Zhou C, French AD, Xia G, Han G, Wang Q, Wu Q (2012) Comparative properties of cellulose nano-crystals from native and mercerized cotton fibers. Cellulose 19:1173–1187

    Article  CAS  Google Scholar 

  • Zuluaga R, Putaux JL, Cruz J, Vélez J, Mondragon I, Gañán P (2009) Cellulose microfibrils from banana rachis: effect of alkaline treatments on structural and morphological features. Carbohydr Polym 76:51–59

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Carrot.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Borchani, K.E., Carrot, C. & Jaziri, M. Untreated and alkali treated fibers from Alfa stem: effect of alkali treatment on structural, morphological and thermal features. Cellulose 22, 1577–1589 (2015). https://doi.org/10.1007/s10570-015-0583-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-015-0583-5

Keywords

Navigation