Skip to main content

Advertisement

Log in

Microfibrillated cellulose (MFC): pullulan bionanocomposite films

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

The aim of this work was to develop and characterize microfibrillated cellulose (MFC)/pullulan bionanocomposites. Fourier transform infrared spectroscopy suggested that the affinity between the two polymers resulted in new hydrogen bonding of the nanocomposite materials compared to pristine pullulan. At the same time, an increase in crystallinity was observed proportional to the amount of MFC used, as shown by the X-ray analyses. Accordingly, final films showed improved mechanical properties proportionally to the filler loading, with impressive elastic modulus and tensile strength of ~4.50 GPa and ~60 MPa, respectively, for the sample containing 10 % MFC. However, as demonstrated by the moisture sorption isotherms, the addition of MFC did not help reduce the amount of water adsorbed by the samples. In addition, the oxygen and water vapor permeability data clearly showed that final films still suffered high relative humidity values, whereas their barrier performance toward oxygen was excellent under dry conditions, with O2 permeability coefficients (P′O 2) comparable with those of common high barrier films/coatings. Finally, while the nanocomposites in the form of films had high haze values (from 23 to 40 %), the same nanocomposites in the form of coatings were decidedly more transparent, which suggests that their use as thin layers could be more suitable when the “see-through” capability must be preserved, for example in food packaging applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aulin C, Gällstedt M, Lindström T (2010) Oxygen and oil barrier properties of microfibrillated cellulose films and coatings. Cellulose 17:559–574

    Article  CAS  Google Scholar 

  • Azeredo HM, Mattoso LH, Wood D, Williams TG, Avena-Bustillos RJ, McHugh TH (2009) Nanocomposite edible films from mango puree reinforced with cellulose nanofibers. J Food Sci 74:31–35

    Article  Google Scholar 

  • Azeredo HM, Mattoso LH, Avena-Bustillos RJ, Filho GC, Munford ML, Wood D, McHugh TH (2010) Nanocellulose reinforced chitosan composite films as affected by nanofiller loading and plasticizer content. J Food Sci 75:1–7

    Article  Google Scholar 

  • Belbekhouche S, Bras J, Siqueira G, Chappey C, Lebrun L, Khelifi B, Marais S, Dufresne A (2011) Water sorption behavior and gas barrier properties of cellulose whiskers and microfibrils films. Carbohyd Polym 83:1740–1748

    Article  CAS  Google Scholar 

  • Bell LN, Labuza TP (2000) Practical aspects of moisture sorption isotherm measurement and use, 2nd edn. Egan Press, Egan, MN

    Google Scholar 

  • Berglund L (2006) New concepts in natural fibres composites. 27th Risø international symposium on material science. Risø National Laboratory, Roskilde, Denmark

  • Cabiaca A, Guillon E, Chambon F, Pinel C, Rataboul F, Essayem N (2011) Cellulose reactivity and glycosidic bond cleavage in aqueous phase by catalytic and non catalytic transformations. Appl Catal a-gen 402:1–10

    Article  Google Scholar 

  • Chiellini E (ed) (2008) Environmentally compatible food packaging. CRC Press, Boca Raton

    Google Scholar 

  • Chinga-Carrasco G, Syverud K (2012) On the structure and oxygen transmission rate of biodegradable cellulose nanobarriers. Nanoscale Res Lett 7:192

    Article  Google Scholar 

  • Chinga-Carrasco G, Miettinen A, Luengo Hendriks CL, Gamstedt EK, Kataja M (2011) Structural characterisation of kraft pulp fibres and their nanofibrillated materials for biodegradable composite applications. In: Nanocomposites and polymers with analytical methods: book 3, ISBN 979-953-307-136-6, pp 243–260

  • Cozzolino CA, Blomfeldt TOJ, Nilsson F, Piga A, Piergiovanni L, Farris S (2012) Dye release behavior from polyvinyl alcohol films in a hydro-alcoholic medium: influence of physicochemical heterogeneity. Colloids Surf A Physicochem Eng Asp 403:45–53

    Article  CAS  Google Scholar 

  • Cozzolino CA, Nilsson F, Iotti M, Sacchi B, Piga A, Farris S (2013) Exploiting the nano-sized features of microfibrillated cellulose (MFC) for the development of controlled release packaging. Colloid Surf B 110:208–216

    Article  CAS  Google Scholar 

  • Farris S, Introzzi L, Piergiovanni L (2009) Evaluation of a bio-coating as a solution to improve barrier, friction and optical properties of plastic films. Packag Technol Sci 22:69–83

    Article  CAS  Google Scholar 

  • Farris S, Introzzi L, Fuentes-Alventosa JM, Santo N, Rocca R, Piergiovanni L (2012) Self-assembled pullulan-silica oxygen barrier hybrid coatings for food packaging applications. J Agric Food Chem 60(3):782–790

    Article  CAS  Google Scholar 

  • Farris S, Uysal Unalan I, Introzzi L, Fuentes-Alventosa JM, Cozzolino CA (2014) Pullulan-based films and coatings for food packaging: present applications, emerging opportunities, and future challenges. J App Polym Sci 131:40539–40551

    Article  Google Scholar 

  • Faruk O, Bledzki AK, Fink HP, Sain M (2012) Biocomposites reinforced with natural fibers: 2000–2010. Prog Polym Sci 37:1552–1596

    Article  CAS  Google Scholar 

  • French AD (2014) Idealized powder diffraction patterns for cellulose polymorphs. Cellulose 21:885–896

    Article  CAS  Google Scholar 

  • Fuentes-Alventosa JM, Introzzi L, Santo N, Cerri G, Brundu A, Farris S (2013) Self-assembled nanostructured biohybrid coatings by an integrated ‘sol-gel: intercalation’ approach. RSC Adv 3:25086–25096

    Article  CAS  Google Scholar 

  • Hansen NML, Blomfeldt TOJ, Hedenqvist MS, Plackett DV (2012) Properties of plasticized composite films prepared from nanofibrillated cellulose and birch wood xylan. Cellulose 19:2015–2031

    Article  CAS  Google Scholar 

  • Herrick FW, Casebier RL, Hamilton JK, Sandberg KR (1983) Microfibrillated cellulose: morphology and accessibility. J Appl Polym Sci Appl Polym Symp 37:797–813

    CAS  Google Scholar 

  • Hinterstoisser B, Salmén L (2000) Application of dynamic 2D FTIR to cellulose. Vib Spectrosc 22:111–118

    Article  CAS  Google Scholar 

  • Hu YS, Mehta S, Schiraldi DA, Hiltner A, Baer E (2005) Effect of water sorption on oxygen-barrier properties of aromatic polyamides. J Polym Sci Pol Phys 43:1365–1381

    Article  CAS  Google Scholar 

  • Hult EL, Iversen T, Sugiyama J (2003) Characterization of the supermolecular structure of cellulose in wood pulp fibres. Cellulose 10:103–110

    Article  CAS  Google Scholar 

  • Hult EL, Iotti M, Lenes M (2010) Efficient approach to high barrier packaging using microfibrillar cellulose and shellac. Cellulose 17:575–586

    Article  CAS  Google Scholar 

  • Introzzi L, Fuentes-Alventosa JM, Cozzolino CA, Trabattoni S, Tavazzi S, Bianchi CL, Schiraldi A, Piergiovanni L, Farris S (2012a) ‘Wetting enhancer’ pullulan coating for anti-fog packaging applications. ACS Appl Mater Interfaces 4:3692–3700

    Article  CAS  Google Scholar 

  • Introzzi L, Blomfeldt TOJ, Trabattoni S, Tavazzi S, Santo N, Schiraldi A, Piergiovanni L, Farris S (2012b) Ultrasound-assisted pullulan/montmorillonite bionanocomposite coating with high oxygen barrier properties. Langmuir 28:11206–11210

    Article  CAS  Google Scholar 

  • Iotti M, Gregersen ØW, Moe S, Lenes M (2011) Rheological studies of microfibrillar cellulose water dispersions. J Polym Environ 19:137–145

    Article  CAS  Google Scholar 

  • Jonoobi M, Harun J, Mathew AP, Oksman K (2010) Mechanical properties of cellulose nanofiber (CNF) reinforced polylactic acid (PLA) prepared by twin screw extrusion. Compos Sci Technol 70:1742–1747

    Article  CAS  Google Scholar 

  • Kaushik A, Singh M, Verma G (2010) Green nanocomposites based on thermoplastic starch and steam exploded cellulose nanofibrils from wheat straw. Carbohyd Polym 82:337–345

    Article  CAS  Google Scholar 

  • Khalil HPSA, Bhat AH, Yusra IAF (2012) Green composites from sustainable cellulose nanofibrils: a review. Carbohyd Polym 87:963–979

    Article  Google Scholar 

  • Klemm D, Kramer F, Moritz S, Lindström T, Ankerfors M, Gray D, Dorris A (2011) Nanocelluloses: a new family of nature-based materials. Angew Chem Int Ed 50:5438–5466

    Article  CAS  Google Scholar 

  • Kristo E, Biliaderis CG (2006) Water sorption and thermo-mechanical properties of water/sorbitol-plasticized composite biopolymer films: caseinate–pullulan bilayers and blends. Food Hydrocolloid 20:1057–1071

    Article  CAS  Google Scholar 

  • Kristo E, Biliaderis CG (2007) Physical properties of starch nanocrystal-reinforced pullulan films. Carbohyd Polym 68:146–158

    Article  CAS  Google Scholar 

  • Kurek M, Guinault A, Voilley A, Galić K, Debeaufort F (2014) Effect of relative humidity on carvacrol release and permeation properties of chitosan based films and coatings. Food Chem 144:9–17

    Article  CAS  Google Scholar 

  • Lacroix M (2009) Mechanical and permeability properties of edible films and coatings for food and pharmaceutical applications. In: Embuscado ME, Huber KC (eds) Edible films and coatings for food applications. Springer, Berlin, pp 347–366

    Chapter  Google Scholar 

  • Lavoine N, Desloges I, Dufresne A, Bras J (2012) Microfibrillated cellulose: its barrier properties and applications in cellulosic materials: a review. Carbohyd Polym 90:735–764

    Article  CAS  Google Scholar 

  • Leathers TD (2003) Biotechnological production and applications of pullulan. Appl Microbiol Biotechnol 62:468–473

    Article  CAS  Google Scholar 

  • López-Rubio A, Lagaron JM, Ankerfors M, Lindström T, Nordqvist D, Mattozzi A, Hedenqvist MS (2007) Enhanced film forming and film properties of amylopectin using micro-fibrillated cellulose. Carbohydr Polym 68:718–727

    Article  Google Scholar 

  • Lu J, Wang T, Drzal LT (2008) Preparation and properties of microfibrillated cellulose polyvinyl alcohol composite materials. Compos A 39:738–746

    Article  Google Scholar 

  • Mali S, Sakanaka LS, Yamashita F, Grossmann MVE (2005) Water sorption and mechanical properties of cassava starch films and their relation to plasticizing effect. Carbohydr Polym 60:283–289

    Article  CAS  Google Scholar 

  • Marcovich NE, Reboredo MM, Aranguren MI (1996) FTIR spectroscopy applied to woodflour. Compos Interfaces 4:119–132

    Article  CAS  Google Scholar 

  • Minelli M, Baschetti MG, Doghieri F, Ankerfors M, Lindström T, Siró I, Plackett D (2010) Investigation of mass transport properties of microfibrillated cellulose (MFC) films. J Membrane Sci 358:67–75

    Article  CAS  Google Scholar 

  • Moon RJ, Martini A, Nairn J, Simonsen J, Youngblood J (2011) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 40:3941–3994

    Article  CAS  Google Scholar 

  • Ninan N, Muthiah M, Park I-K, Elain A, Thomas S, Grohens Y (2013) Pectin/carboxymethyl cellulose/microfibrillated cellulose composite scaffolds for tissue engineering. Carbohyd Polym 98:877–885

    Article  CAS  Google Scholar 

  • Peng XW, Ren JL, Zhong LX, Sun RC (2011) Nanocomposite films based on xylan-rich hemicelluloses and cellulose nanofibers with enhanced mechanical properties. Biomacromolecules 12:3321–3329

    Article  CAS  Google Scholar 

  • Pereda M, Amica G, Rácz I, Marcovich NE (2011) Structure and properties of nanocomposite films based on sodium caseinate and nanocellulose fibers. J Food Eng 103:76–83

    Article  CAS  Google Scholar 

  • Quirijns EJ, van Boxtel AJB, van Loon WKP, van Straten G (2005) Sorption isotherms, GAB parameters and isosteric heat of sorption. J Sci Food Agric 85:1805–1814

    Article  CAS  Google Scholar 

  • Segal L, Creely JJ, Martin AE, Conrad CM (1959) An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Text Res J 29:786–794

    Article  CAS  Google Scholar 

  • Shingel KI (2002) Determination of structural peculiarities of dextran, pullulan and γ-irradiated pullulan by Fourier-transform IR spectroscopy. Carbohyd Res 337:1445–1451

    Article  CAS  Google Scholar 

  • Siqueira G, Bras J, Dufresne A (2010) Cellulosic bionanocomposites: a review of preparation, properties and applications. Polymers 2:728–765

    Article  CAS  Google Scholar 

  • Siró I, Plackett D (2010) Microfibrillated cellulose and new nanocomposite materials: a review. Cellulose 17:459–494

    Article  Google Scholar 

  • Sorrentino A, Gorrasi G, Vittoria V (2007) Potential perspectives of bio-nanocomposites for food packaging applications. Trends Food Sci Technol 18:84–95

    Article  CAS  Google Scholar 

  • Sothornvit R, Rhim JW, Hong SI (2009) Effect of nano-clay type on the physical and antimicrobial properties of whey protein isolate/clay composite films. J Food Eng 91:468–473

    Article  CAS  Google Scholar 

  • Syverud K, Stenius P (2009) Strength and barrier properties of MFC films. Cellulose 16:75–85

    Article  CAS  Google Scholar 

  • Syverud K, Chinga-Carrasco G, Toledo J, Toledo PG (2011) A comparative study of Eucalyptus and Pinus radiata pulp fibres as raw materials for production of cellulose nanofibrils. Carbohyd Polym 84:1033–1038

    Article  CAS  Google Scholar 

  • Tilley RJD (2011) Colour and the optical properties of materials, 2nd edn. Wiley, Hoboken, p 42

    Google Scholar 

  • Tingaut P, Zimmermann T, Lopez-Suevos F (2009) Synthesis and characterization of bionanocomposites with tunable properties from poly(lactic acid) and acetylated microfibrillated cellulose. Biomacromolecules 11:454–464

    Article  Google Scholar 

  • Tong Q, Xiao Q, Lim LT (2008) Preparation and properties of pullulan–alginate–carboxymethylcellulose blend films. Food Res Int 41:1007–1014

    Article  CAS  Google Scholar 

  • Trovatti E, Fernandes SCM, Rubatat L, da Silva Perez D, Freire CSR, Silvestre AJD, Neto CP (2012) Pullulan–nanofibrillated cellulose composite films with improved thermal and mechanical properties. Compos Sci Technol 72:1556–1561

    Article  CAS  Google Scholar 

  • Turbak AF, Snyder FW, Sandberg KR (1983) Microfibrillated cellulose, a new cellulose product: properties, uses, and commercial potential. J Appl Polym Sci: Appl Polym Symp 37:815–827

    CAS  Google Scholar 

  • Vieira AP, Santana SAA, Bezerra CWB, Silva HAS, Chaves JAP, de Melo JCP, da Silva Filhod EC, Airoldi C (2011) Epicarp and Mesocarp of Babassu (Orbignya speciosa): characterization and application in copper phtalocyanine dye removal. J Braz Chem Soc 22(1):21–29

    Article  CAS  Google Scholar 

  • Wu J, Zhong F, Li Y, Shoemaker CF, Xia W (2013) Preparation and characterization of pullulanechitosan and pullulanecarboxymethyl chitosan blended films. Food Hydrocolloid 30:82–91

    Article  CAS  Google Scholar 

  • Xiao Q, Lim LT, Tong Q (2012) Properties of pullulan-based blend films as affected by alginate content and relative humidity. Carbohyd Polym 87:227–234

    Article  CAS  Google Scholar 

  • Yuen S (1974) Pullulan and its applications. Process Biochem 9:7–9

    CAS  Google Scholar 

  • Zhang Z, Britt IJ, Tung MA (2001) Permeation of oxygen and water vapor through EVOH films as influenced by relative humidity. J Appl Polym Sci 82:1866–1872

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefano Farris.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 244 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cozzolino, C.A., Cerri, G., Brundu, A. et al. Microfibrillated cellulose (MFC): pullulan bionanocomposite films. Cellulose 21, 4323–4335 (2014). https://doi.org/10.1007/s10570-014-0433-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-014-0433-x

Keywords

Navigation