Skip to main content
Log in

Hydrothermal treatment of microcrystalline cellulose under mild conditions: characterization of solid and liquid-phase products

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Microcrystalline cellulose (MCC) particles were subjected to hydrothermal treatment using an autoclave with temperatures ranging from 200 to 250 °C and reaction times ranging from 20 to 100 min. The structure and chemical composition of the reacted solid phase was analyzed by X-ray diffraction, thermo-gravimetric analysis, FTIR spectroscopy and 13C-NMR spectroscopy. The relative composition of the water-soluble products was determined by one-dimensional 1H-NMR and two-dimensional homo and hetero-nuclear NMR spectroscopy. Within the experimental temperature and treatment time ranges, the crystallinity of the reacted solid phase was found to be mostly dependent on the treatment temperature while the aqueous solution was found to change with both temperature and treatment time. At the maximum temperature employed in this study (250 °C), the solid products are similar to amorphous oxidized carbon with glucose as the main water-soluble product. At lower temperatures the particles are unconverted MCC and the liquid products are primarily levulinic acid, formic acid and acetic acid with smaller quantities of 5-hydroxymethyl-furfural and glucose. Heterogeneous and liquid phase reaction-schemes are proposed to explain the observed solid and water-soluble products as a function of temperature and treatment time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Scheme 1

Similar content being viewed by others

References

  • Agarwal UP, Reiner RS, Ralph SA (2010) Cellulose I crystallinity determination using FT-Raman spectroscopy: univariate and multivariate methods. Cellulose 17:721–733

    Article  CAS  Google Scholar 

  • Atalla RH, Gast JC, Sindorf DW, Bartuska VJ, Maciel GE (1980) C-13 NMR-spectra of cellulose polymorphs. J Am Chem Soc 102:3249–3251

    Article  CAS  Google Scholar 

  • Bansal P, Hall M, Realff MJ, Lee JH, Bommarius AS (2010) Multivariate statistical analysis of X-ray data from cellulose: a new method to determine degree of crystallinity and predict hydrolysis rates. Biores Tech 101:4461–4471

    Article  CAS  Google Scholar 

  • Cantero DA, Dolores Bermejo M, Jose Cocero M (2013) Kinetic analysis of cellulose depolymerization reactions in near critical water. J Supercrit Fluids 75:48–57

  • Deguchi S, Tsujii K, Horikoshi K (2008) Crystalline-to-amorphous transformation of cellulose in hot and compressed water and its implications for hydrothermal conversion. Green Chem 10:191–196

    Article  CAS  Google Scholar 

  • Driemeier C, Calligaris GA (2011) Theoretical and experimental developments for accurate determination of crystallinity of cellulose I materials. J Appl Cryst 44:184–192

    Article  CAS  Google Scholar 

  • Earl WL, Vanderhart DL (1980) High-resolution, magic angle sample spinning C-13 NMR of solid cellulose-I. J Am Chem Soc 102:3251–3252

    Article  CAS  Google Scholar 

  • Ehara K, Saka S (2002) A comparative study on chemical conversion of cellulose between the batch-type and flow-type systems in supercritical water. Cellulose 9:301–311

    Article  CAS  Google Scholar 

  • French AD, Santiago Cintrón M (2013) Cellulose polymorphy, crystallite size, and the Segal crystallinity index. Cellulose 20:583–588

    Article  CAS  Google Scholar 

  • Gallezot P (2012) Conversion of biomass to selected chemical products. Chem Soc Rev 41:1538–1558

    Article  CAS  Google Scholar 

  • Horii F, Hirai A, Kitamaru R (1987) CP/MAS C-13 NMR-spectra of the crystalline components of native celluloses. Macromolecules 20:2117–2120

    Article  CAS  Google Scholar 

  • Huber GW (2008) Breaking the chemical and engineering barriers to lignocellulosic biofuels. National Science Foundation Report, USA

    Google Scholar 

  • Kabyemela BM, Adschiri T, Malaluan RM, Arai K (1997) Kinetics of glucose epimerization and decomposition in subcritical and supercritical water. Ind Eng Chem Res 36:1552–1558

  • Kamio E, Takahashi S, Noda H, Fukuhara C, Okamura T (2006) Liquefaction of cellulose in hot compressed water under variable temperatures. Ind Eng Chem Res 45:4944–4953

    Article  CAS  Google Scholar 

  • Kamio E, Sato H, Takahashi S, Noda H, Fukuhara C, Okamura T (2008) Liquefaction kinetics of cellulose treated by hot compressed water under variable temperature conditions. J Mater Sci 43:2179–2188

    Article  CAS  Google Scholar 

  • Kumar S, Gupta RB (2008) Hydrolysis of microcrystalline cellulose in subcritical and supercritical water in a continuous flow reactor. Ind Eng Chem Res 47:9321–9329

    Article  CAS  Google Scholar 

  • Leppanen K, Andersson S, Torkkeli M, Knaapila M, Kotelnikova N, Serimaa R (2009) Structure of cellulose and microcrystalline cellulose from various wood species, cotton and flax studied by X-ray scattering. Cellulose 16:999–1015

    Article  Google Scholar 

  • Masson JF, Manley RS (1992) Solid-state NMR of some cellulose synthetic polymer blends. Macromolecules 25:589–592

    Article  CAS  Google Scholar 

  • Mettler MS, Mushrif SH, Paulsen AD, Javadekar AD, Vlachos DG, Dauenhauer PJ (2012) Revealing pyrolysis chemistry for biofuels production: conversion of cellulose to furans and small oxygenates. Energy Environ Sci 5:5414–5424

    Article  CAS  Google Scholar 

  • Moon RJ, Martini A, Nairn J, Simonsen J, Youngblood J (2011) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 40:3941–3994

    Article  CAS  Google Scholar 

  • Newman RH, Hemmingson JA (1995) C-13 NMR distinction between categories of molecular order and disorder in cellulose. Cellulose 2:95–110

    Article  CAS  Google Scholar 

  • Nishiyama Y, Langan P, Chanzy H (2002) Crystal structure and hydrogen-bonding system in cellulose 1 beta from synchrotron X-ray and neutron fiber diffraction. J Am Chem Soc 124:9074–9082

    Article  CAS  Google Scholar 

  • NIST (2005) Standard reference database number 69, NIST chemistry WebBook, National Institute of Standards and Technology, Gaithersburg MD, 20899. http://webbook.nist.gov

  • Park S, Baker JO, Himmel ME, Parilla PA, Johnson DK (2010) Cellulose crystallinity index: measurement techniques and their impact on interpreting cellulase performance. Biotechnol Biofuels 3:1–10

    Article  Google Scholar 

  • Sasaki M, Fang Z, Fukushima Y, Adschiri T, Arai K (2000) Dissolution and hydrolysis of cellulose in subcritical and supercritical water. Ind Eng Chem Res 39:2883–2890

    Article  CAS  Google Scholar 

  • Scherrer P (1918) Bestimmung der Größe und der inneren Struktur von Kolloidteilchen mittels Röntgenstrahlen. Nachr Ges Wiss Gottingen 26:98–100

    Google Scholar 

  • Schwanninger M, Rodrigues JC, Pereira H, Hinterstoisser B (2004) Effects of short-time vibratory ball milling on the shape of FT-IR spectra of wood and cellulose. Vib Spectrosc 36:23–40

    Article  CAS  Google Scholar 

  • Seehra MS, Akkineni LP, Yalamanchi M, Singh V, Poston J (2012) Structural characteristics of nanoparticles produced by hydrothermal pretreatment of cellulose and their applications for electrochemical hydrogen generation. Int J Hydrog Energy 37:9514–9523

    Article  CAS  Google Scholar 

  • Segal L, Creely JJ, Martin AE, Conrad CM (1959) An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Text Res J 29:786–794  

    Article  CAS  Google Scholar 

  • Srokol Z, Bouche AG, van Estrik A, Strik RCJ, Maschmeyer T, Peters JA (2004) Hydrothermal upgrading of biomass to biofuel; studies on some monosaccharide model compounds. Carbohydr Res 339:1717–1726

  • Thygesen A, Oddershede J, Lilholt H, Thomsen AB, Stahl K (2005) On the determination of crystallinity and cellulose content in plant fibres. Cellulose 12:563–576

    Article  CAS  Google Scholar 

  • Titirici M-M, Antonietti M, Baccile N (2008) Hydrothermal carbon from biomass: a comparison of the local structure from poly-to monosaccharides and pentoses/hexoses. Green Chem 10:1204–1212

    Article  CAS  Google Scholar 

  • Toor SS, Rosendahl L, Rudolf A (2011) Hydrothermal liquefaction of biomass: a review of subcritical water technologies. Energy 36:2328–2342

    Article  CAS  Google Scholar 

  • Yaws CL, Narasimhan PK, Gabbula C (2009) Yaws' handbook of Antoine coefficients for vapor pressure (2nd Electronic Edition). Knovel. Online

  • Yu Y, Wu H (2010) Significant differences in the hydrolysis behavior of amorphous and crystalline portions within microcrystalline cellulose in hot-compressed water. Ind Eng Chem Res 49:3902–3909

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge financial support from West Virginia University. MSS also acknowledges financial support from the U.S. Department of Energy (Contract # DE-FC26-05NT42456) during the initial stages of the project. Funding for solution NMR instrumentation was provided by the National Science Foundation (CHE-1228336).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M. S. Seehra or F. Goulay.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Seehra, M.S., Popp, B.V., Goulay, F. et al. Hydrothermal treatment of microcrystalline cellulose under mild conditions: characterization of solid and liquid-phase products. Cellulose 21, 4483–4495 (2014). https://doi.org/10.1007/s10570-014-0424-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-014-0424-y

Keywords

Navigation