Skip to main content
Log in

In situ green synthesis of silver nanoparticles on cotton fabric using Seidlitzia rosmarinus ashes

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Recently, utilization of ecofriendly procedures has been developed for synthesis of nanoparticles to avoid use of toxic chemicals and to achieve biological compatibility. Application of biosynthesis methods through the use of microorganisms, yeasts, plants or plant extracts is known as green synthesis. The ashes of burnt leaves and stems of Seidlitzia rosmarinus plant are called Keliab in Iran, mostly containing sodium and potassium carbonate. In this study, Keliab is introduced as a natural source for in situ synthesis of silver nanoparticles (Ag NPs) on cotton fabric. Absorption of carbonate ions on the surface stabilizes the nanoparticles and prevents agglomeration. Synthesis of Ag NPs on cotton fabrics was proved by X-ray diffraction (XRD), Fourier-transform infrared (FT-IR), scanning electron microscopy (SEM), and energy-dispersive X-ray (EDX) analysis. Also ultraviolet–visible (UV–Vis) spectra of the remaining solutions of treated fabrics confirmed the synthesis of Ag NPs in the solution. Furthermore, the tensile strength, color change, and antibacterial activity of the treated cotton fabrics were investigated. Overall, the treated fabrics indicated excellent antibacterial properties against Staphylococcus aureus and Escherichia coli even at low Ag NP content with negligible change of color and tensile strength.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Abkenar SS, Malek RMA (2012) Preparation, characterization, and antimicrobial propertyof cotton cellulose fabric grafted with poly (propylene imine) dendrimer. Cellulose 19:1701–1714

    Article  Google Scholar 

  • Allahyarzadeh V, Montazer M, HemmatiNejad N, Samadi N (2013) In situ synthesis of nano silver on polyester using NaOH/nano TiO2. J Appl Polym Sci 129(2):892–900

    Article  CAS  Google Scholar 

  • Amendola V, Polizzi S, Meneghetti M (2007) Free silver nanoparticles synthesized by laser ablation in organic solvents and their easy functionalization. Langmuir 23:6766–6770

    Article  CAS  Google Scholar 

  • Augustine R, Kalarikkal N, Thomas S (2013) A facile and rapid method for the black pepper leaf mediated green synthesis of silver nanoparticles and the antimicrobial study. Appl Nanosci. doi:10.1007/s13204-013-0260-7

    Google Scholar 

  • Bae CH, Nam SH, Park SM (2002) Formation of silver nanoparticles by laser ablation of a silver target in NaCl solution. Appl Surf Sci 197–198:628–634

    Article  Google Scholar 

  • Baker C, Pradhan A, Pakstis L, Pochan DJ, Shah SI (2005) Synthesis and antibacterial properties of silver nanoparticles. J Nanosci Nanotechnol 5(2):244–249

    Article  CAS  Google Scholar 

  • Bankara A, Joshi B, Kumar AR, Zinjardea S (2010) Banana peel extract mediated novel route for the synthesis of silver nanoparticles. Colloids Surf A368:58–63

    Article  Google Scholar 

  • Chen K (2006) Analysis of reactive dye mixtures: characterization of products from bis-dichlorotriazine dye synthesis. MSc Dissertation, North Carolina State University

  • Darroudi M, Ahmad MB, Shameli K, Abdullah AH, Ibrahim NA (2009) Synthesis and characterization of UV-irradiated silver/montmorillonite nanocomposites. Solid State Sci 11:1621–1624

    Article  CAS  Google Scholar 

  • Darroudi M, Ahmad MB, Abdullah AH, Ibrahim NA, Shameli K (2010) Effect of accelerator in green synthesis of silver nanoparticles. Int J Mol Sci 11:3898–3905

    Article  CAS  Google Scholar 

  • Dastjerdi R, Montazer M (2010) A review on the application of inorganic nano-structured materials in the modification of textiles: focus on antimicrobial properties. Colloids Surf B 79:5–18

    Article  CAS  Google Scholar 

  • Dastjerdi R, Montazer M, Shahsavan S (2009) A new method to stabilize nanoparticles on textile surfaces. Colloids Surf A 345:202–210

    Article  CAS  Google Scholar 

  • Deymeh H, Shadizadeh SR, Motafakkerfard R (2012) Experimental investigation of Seidlitziarosmarinus effect on oil–water interfacial tension: usable for chemical enhanced oil recovery. Sci Iran Trans C19:1661–1664

    Article  Google Scholar 

  • Dipankar C, Murugan S (2012) The green synthesis, characterization and evaluation of the biological activities of silver nanoparticles synthesized from Iresineherbstii leaf aqueous extracts. Colloid Surface B 98:112–119

    Article  CAS  Google Scholar 

  • El-Rafie HM, El-Rafie MH, Zahran MK (2013) Green synthesis of silver nanoparticles using polysaccharides extracted from marine macro algae. Carbohydr Polym 96:403–410

    Article  CAS  Google Scholar 

  • El-Shishtawy RM, Asiri AM, Abdelwahed NAM, Al-Otaibi MM (2011) In situ production of silver nanoparticle on cotton fabric and its antimicrobial evaluation. Cellulose 18:75–82

    Article  CAS  Google Scholar 

  • Gao Y, Cranston R (2008) Recent advances in antimicrobial treatments of textiles. Text Res J 78(1):60–72

    Article  CAS  Google Scholar 

  • Giménez-Martín E, López-Andrade M, Ontiveros-Ortega A, Espinosa-Jiménez M (2009) Adsorption of chlorhexidine onto cellulosic fibers. Cellulose 16:467–479

    Article  Google Scholar 

  • Hadi MR (2009) Biotechnological potentials of Seidlitzia rosmarinus: a mini review. Afr J Biotechnol 8(11):2429–2431

    Google Scholar 

  • Huang HH, Ni XP, Loy GL, Chew CH, Tan KL, Loh FC, Deng JF, Xu GQ (1996) Photochemical formation of silver nanoparticles in poly(N-vinylpyrrolidone). Langmuir 12(4):909–912

    Article  CAS  Google Scholar 

  • Jiang T, Liu L, Yao J (2011) In situ deposition of silver nanoparticles on the cotton fabrics. Fiber Polym 12(5):620–625

    Article  CAS  Google Scholar 

  • Justin Packia Jacob S, Finub JS, Narayanan A (2012) Synthesis of silver nanoparticles using Piper longum leaf extracts and its cytotoxic activity against Hep-2 cell line. Colloids Surf B 91:212–214

    Article  CAS  Google Scholar 

  • Kaplan DL (ed) (1998) Biopolymers from renewable resources. Springer, New York

    Google Scholar 

  • Kaviya S, Santhanalakshmi J, Viswanathan B (2012) Biosynthesis of silver nano-flakes by Crossandra infundibuliformis leaf extract. Mater Lett 67:64–66

    Article  CAS  Google Scholar 

  • Khan Z, Al-Thabaiti SA, Obaid AY, Al-Youbi AO (2011) Preparation and characterization of silver nanoparticles by chemical reduction method. Colloids Surf B 82(2):513–517

    Article  CAS  Google Scholar 

  • Kim KD, Han DN, Kim HT (2004) Optimization of experimental conditions based on the Taguchi robust design for the formation of nano-sized silver particles by chemical reduction method. Chem Eng J 104(1–3):55–61

    Article  CAS  Google Scholar 

  • Kim CY, Kim BM, Jeong SH, Yi S (2006) Effect of sodium carbonate on the formation of colloidal silver particles by a reduction reaction of silver ions with PVP. J Ceram Process Res 7(3):241–244

    Google Scholar 

  • Maretti L, Billone PS, Liu Y, Scaiano JC (2009) Facile photochemical synthesis and characterization of highly fluorescent silver nanoparticles. J Am Chem Soc 131(39):13972–13980

    Article  CAS  Google Scholar 

  • Mary EJ, Inbathamizh L (2012) Green synthesis and characterization of nano silver using leaf extract of morinda pubescens. Asian J Pharm Clin Res 5(1):159–162

    Google Scholar 

  • Maryan AS, Montazer M, Harifi T (2013) One step synthesis of silver nanoparticles and discoloration of blue cotton denim garment in alkali media. J Polym Sci 20:189–198

    Google Scholar 

  • Mohanpuria P, Rana NK, Yadav SK (2008) Biosynthesis of nanoparticles: technological concepts and future applications. J Nanopart Res 10:507–517

    Article  CAS  Google Scholar 

  • Montazer M, Alimohammadi F, Shamei A, Rahimi MK (2012a) In situ synthesis of nano silver on cotton using Tollens’ reagent. Carbohydr Polym 87:1706–1712

    Article  CAS  Google Scholar 

  • Montazer M, Alimohammadi F, Shamei A, Rahimi MK (2012b) Durable antibacterial and cross-linking cotton with colloidal silver nanoparticles and butane tetra carboxylic acid without yellowing. Colloids Surf B 89:196–202

    Article  CAS  Google Scholar 

  • Oh SY, Yoo D, Shin Y, Kim HC, Kim HY, Chung YS, Park WH, Youk JH (2005) Crystalline structure analysis of cellulose treated with sodium hydroxide and carbon dioxide by means of X-ray diffraction and FTIR spectroscopy. Carbohydr Res 340:2376–2391

    Article  CAS  Google Scholar 

  • Pavia D, Lampman M, Kriz G (1996) Introduction to Spectroscopy (2nd edn). Washington: Department of Chemistry, Western Washington University, Chapter 2

  • Parashar V, Parashar R, Sharma B, Pandey AC (2009) Parthenium leaf extract mediated synthesis of silver nanoparticles: a novel approach towards weed utilization. Dig J Nanomater Biostruct 4(1):45–50

    Google Scholar 

  • Park SY, Chung JW, Priestley RD, Kwak S-Y (2012) Covalent assembly of metal nanoparticles on cellulose fabric and its antimicrobial activity. Cellulose 19:2141–2151

    Article  CAS  Google Scholar 

  • Perelshtein I, Applerot G, Perkas N, Guibert G, Mikhailov S, Gedanken (2008) Sonochemical coating of silver nanoparticles on textile fabrics (nylon, polyester and cotton) and their antibacterial activity. Nanotechnology 19. doi:10.1088/-957-4484/19/24/245705

  • Perera S, Bhushan B, Bandara R, Rajapakse G, Rajapakse S, Bandara C (2013) Morphological, antimicrobial, durability, and physical properties of untreated and treated textiles using silver-nanoparticles. Colloids Surf A 436:975–989

    Article  CAS  Google Scholar 

  • Prabhu S, Poulose EK (2012) Silver nanoparticles: mechanism of antimicrobialaction, synthesis, medical applications, and toxicity effects. Int Nano Lett 2:32–41

    Article  Google Scholar 

  • Prasada TNVKV, Kambala VSR, Naidu R (2013) Phyconanotechnology: synthesis of silver nanoparticlesusing brown marine algae Cystophora moniliformis and their characterization. J Appl Phycol 25:177–182

    Article  Google Scholar 

  • Pyatenko A, Shimokawa K, Yamaguchi M, Nishimura O, Suzuki M (2004) Synthesis of silver nanoparticles by laser ablation in pure water. Appl Phys A 79(4–6):803–806

    CAS  Google Scholar 

  • Qian Y, Yu H, He D, Yang H, Wang W, Wan X, Wang L (2013) Biosynthesis of silver nanoparticles by the endophytic fungus Epicoccum nigrum and their activity against pathogenic fungi. Bioprocess Biosyst Eng 36(11):1613–1619

  • Rivero PJ, Goicoechea J, Urrutia A, Arregui FJ (2013) Effect of both protective and reducing agents in the synthesis of multicolor silver nanoparticles. Nanoscale Res Lett 8:101–109

    Article  Google Scholar 

  • Rutherford HA, Minor FW, Martin AR, Harris M (1942) Oxidation of cellulose: the reaction of cellulose with periodic acid. J Res Natl Bur Stand 29:131–141

    Article  CAS  Google Scholar 

  • Saxena A, Tripathi RM, Zafar F, Singh P (2012) Green synthesis of silver nanoparticles using aqueous solution of Ficus benghalensis leaf extract and characterization of their antibacterial activity. Mater Lett 67:91–94

    Article  CAS  Google Scholar 

  • Schmidt-Ott A (1988) New approaches to in situ characterization of ultrafine agglomerates. J Aerosol Sci 19(5):553–563

    Article  CAS  Google Scholar 

  • Sedighi A, Montazer M, Hemmatinejad N (2014) Copper nanoparticles on bleached cotton fabric: in situ synthesis and characterization. Cellulose 2:2119–2132

    Article  Google Scholar 

  • Shahid ul I, Shahid M, Mohammad F (2013) Green chemistry approaches to develop antimicrobial textiles based on sustainable biopolymers—a review. Ind Eng Chem Res 52(15):5245–5260

    Article  Google Scholar 

  • Shankar SS, Ahmad A, Sastry M (2003) Geranium leaf assisted biosynthesis of silver nanoparticles. Biotechnol Progr 19(6):1627–1631

    Article  CAS  Google Scholar 

  • Shateri Khalil-Abad M, Yazdanshenas ME, Nateghi MR (2009) Effect of cationization on adsorption of silver nanoparticles on cotton surfaces and its antibacterial activity. Cellulose 16:1147–1157

    Article  CAS  Google Scholar 

  • Song KC, Lee SM, Park TS, Lee BS (2009) Preparation of colloidal silver nanoparticles by chemical reduction method. Korean J Chem Eng 26(1):153–155

    Article  CAS  Google Scholar 

  • Tang B, Kaur J, Sun L, Wang X (2013) Multifunctionalization of cotton through in situ green synthesis of silver nanoparticles. Cellulose 20:3053–3065

    Article  CAS  Google Scholar 

  • Tanvir S, Oudet F, Pulvin S, Anderson WA (2012) Coenzyme based synthesis of silver nanocrystals. Enzym Microb Technol 51:231–236

    Article  CAS  Google Scholar 

  • Thambiduria S (2011) Extraction and characterization of seaweed nanoparticles for application on cotton fabric. In Handbook of Marine Macroalgae: Biotechnology and Applied Phycology (Ed. Kim S-K), John Wiley & Sons, chapter 9

  • Tsuji T, Iryo K, Watanabe N, Tsuji M (2002) Preparation of silver nanoparticles by laser ablation in solution: influence of laser wavelength on particle size. Appl Surf Sci 202(1–2):80–85

    Article  CAS  Google Scholar 

  • Vankar PS, Shukla D (2012) Biosynthesis of silver nanoparticles using lemon leaves extract and its application for antimicrobial finish on fabric. Appl Nanosci 2:163–168

    Article  CAS  Google Scholar 

  • Vigneshwaran N. (2009). “Modification of textile surfaces using nanoparticles”, In: Surface modification of textiles (Ed. Q. Wei), Woodhead publishing limited, Cambridge. Chapter 8:164–184

  • Vijayaraghavan K, Kamala Nalini SP, Prakash NU, Madhankumar D (2012a) One step green synthesis of silver nano/microparticles using extracts of Trachyspermum ammi and Papaver somniferum. Colloids Surf B94:114–117

    Article  Google Scholar 

  • Vijayaraghavan K, Kamala Nalini SP, Prakash NU, Madhankumar D (2012b) Biomimetic synthesis of silver nanoparticles by aqueous extract of Syzygium aromaticum. Mater Lett 75:33–35

    Article  CAS  Google Scholar 

  • Wang H, Qiao X, Chen J, Ding S (2005) Preparation of silver nanoparticles by chemical reduction method. Colloids Surf A256:111–115

    Article  Google Scholar 

  • Wang H, Wang J, Hong J, Wei Q, Gao W, Zhu Z (2007) Preparation and characterization of silver nanocomposite textile. J Coat Technol Res 4(1):101–106

    Article  CAS  Google Scholar 

  • Yazdanshenas ME, Shateri-Khalilabad M (2012) In situ synthesis of silver nanoparticles on alkali-treated cotton fabrics. J Ind Text 42(4):459–474

    Article  Google Scholar 

  • Zahran MK, Ahmed HB, El-Rafie MH (2014) Surface modification of cotton fabrics for antibacterial application by coating with AgNPs–alginate composite. Carbohydr Polym 108:145–152

    Article  CAS  Google Scholar 

  • Zamiri R, Azmi BZ, Ahangar HA, Zamiri G, Husin MS, Wahab ZA (2012) Preparation and characterization of silver nanoparticles in natural polymers using laser ablation. Bull Mater Sci 35(5):727–731

    Article  CAS  Google Scholar 

  • Zhang F, Yang J (2009) Preparation of nano-ZnO and its application to the textile on antistatic finishing. Internet J Chem 1:18–22

    CAS  Google Scholar 

  • Zhang D, Chen L, Zang C, Chen Y, Lin H (2013) Antibacterial cotton fabric grafted with silver nanoparticles and its excellent laundering durability. Carbohydr Polym 92(2):2088–2094

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Majid Montazer.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aladpoosh, R., Montazer, M. & Samadi, N. In situ green synthesis of silver nanoparticles on cotton fabric using Seidlitzia rosmarinus ashes. Cellulose 21, 3755–3766 (2014). https://doi.org/10.1007/s10570-014-0369-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-014-0369-1

Keywords