Skip to main content
Log in

High strength modified nanofibrillated cellulose-polyvinyl alcohol films

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

In this study surface-modified nanofibrillated cellulose (NFC) was used at low levels (0.5 to1.5 wt%) as a reinforcement in a polyvinyl alcohol (PVA) matrix. The modified-NFC–PVA composite films prepared using the solution casting technique showed improved mechanical performance. Birch pulp cellulose was initially modified by allylation using a solvent-free, dry modification method followed by subsequent epoxidation of the allyl groups and finally grinding the pulp to yield epoxy-NFC. In order to obtain optimal mechanical performance, epoxy-NFC with different degrees of substitution was evaluated in the reinforcement of PVA. The addition of 1 wt% epoxy-NFC (degree of substitution, DS 0.07) enhanced the modulus, strength, and strain of pure PVA film by 307, 139 and 23 %, respectively, thus producing the best performing film. The results demonstrate the favourable effect of chemically functionalized NFC on the mechanical properties of polyvinyl alcohol compared to unmodified NFC as reinforcement. In order to improve industrial and economic feasibility, the manufacture of the composite was also done in situ by grinding cellulose directly in PVA to produce the new biocomposite in a one-step process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

DS:

Degree of substitution

ECF:

Elemental chlorine-free

NFC:

Nanofibrillated cellulose

MFC:

Microfibrillated cellulose

PVOH:

Polyvinyl alcohol

PE:

Polyethylene

PP:

Polypropylene

SEM:

Scanning electron microscopy

FTIR:

Fourier transform infrared spectroscopy

DSC:

Differential scanning calorimetry

CP-MAS:

Cross-polarization/magic angle spinning

13C NMR:

Carbon-13 nuclear magnetic resonance

References

  • Alexy P, Káchova D, Kršiak M, Bakoš D, Šimkova B (2002) Poly(vinyl alcohol) stabilisation in thermoplastic processing. Polym Degrad Stab 78:413–421

    Article  CAS  Google Scholar 

  • Arola S, Tammelin T, Setälä H, Tullila A, Linder MB (2012) Immobilization stabilization of proteins on nanofibrillated cellulose derivatives and their bioactive film formation. Biomacromolecules 13:594–603

    Article  CAS  Google Scholar 

  • Asikainen S, Fuhrmann A, Robertsen F (2010) Birch pulp fractions for fine paper and board. Nord Pulp Pap Res J 25:269–276

    Article  CAS  Google Scholar 

  • Bai Y, Li Y, Wang M (2006) Study on synthesis of a hydrophilic bead carrier containing epoxy groups and its properties for glucoamylase immobilization. Enzyme Microb Technol 39:540–547

    Article  CAS  Google Scholar 

  • Bhatnagar A, Sain M (2005) Processing of cellulose nanofiber-reinforced composites. J Reinf Plast Compos 24:1259–1268

    Article  CAS  Google Scholar 

  • Bledzki A, Gassan J (1999) Composites reinforced with cellulose based fibres. Prog Polym Sci 24:221–274

    Article  CAS  Google Scholar 

  • Bulota A, Jääskeläinen AS, Paltakari J, Hughes M (2011) Properties of biocomposites: influence of preparation method, testing environment and a comparison with theoretical models. J Mater Sci 46:3387–3398

    Article  CAS  Google Scholar 

  • Burton S, Harding D (1997) Bifunctional etherification of bead cellulose for ligand attachment with allyl bromide and allyl glycidyl ether. J Chromatogr A 775:29–38

    Article  CAS  Google Scholar 

  • Cai X, Riedl B, Ait-Kadi A (2003) Effect of surface-grafted ionic groups on the performance of cellulose-fiber-reinforced thermoplastic composites. J Pol Sci B Polym Phys 41:2022–2032

    Article  CAS  Google Scholar 

  • Chai W-L, Chow J-D, Chen C–C (2012) Effects of modified starch and different molecular weight polyvinyl alcohols on biodegradable characteristics of polyvinyl alcohol/starch blends. J Polym Environ 20:550–564

    Article  CAS  Google Scholar 

  • Dufresne A, Cavaille JY, Vignon MR (1997) Mechanical behaviour of sheets prepared from sugar beet cellulose microfibrils. J Appl Polym Sci 64:1185–1194

    Article  CAS  Google Scholar 

  • Ebeling T, Paillet M, Borsali R, Diat O, Dufresne A, Cavaille JY, Chanzy H (2009) Shear-induced orientation phenomena in suspensions of cellulose microcrystals, revealed by small angle X-ray scattering. Langmuir 15:6123–6126

    Article  Google Scholar 

  • Eronen P, Österberg M, Heikkinen S, Tenkanen M, Laine J (2011) Interactions of structurally different hemicelluloses with nanofibrillar cellulose. Carbohydr Polym 86:1281–1290

    Article  CAS  Google Scholar 

  • Fakirov S, Bhattacharyya D, Shields RJ (2008) Nanofibril reinforced composites from polymer blends. Colloids Surf A Physicochem Eng Aspects 313–314:2–8

    Article  Google Scholar 

  • Flieger M, Kantorová M, Prell A, Řezanka T, Votruba J (2003) Biodegradable plastics from renewable sources. Folia Microbiol 48(1):27–44

    Article  CAS  Google Scholar 

  • Fukuzumi H, Saito T, Iwata T, Kumamoto Y, Isogai A (2009) Transparent and high gas barrier films of cellulose nanofibers prepared by TEMPO-mediated oxidation. Biomacromolecules 10:162–165

    Article  CAS  Google Scholar 

  • Guirguis OW, Moselhey MTH (2012) Thermal and structural properties of poly(vinyl alcohol) and hydroxypropyl cellulose blends. Nat Sci 4(1):57–67

    CAS  Google Scholar 

  • Heinze T, Lincke T, Fenn D, Koschella A (2008) Efficient allylation of cellulose in dimethyl sulfoxide/tetrabutylammonium fluoride trihydrate. Polym Bull 61:1–9

    Article  CAS  Google Scholar 

  • Hrabalova M, Schwanninger M, Wimmer R, Gregorova A, Zimmermann T, Mundigler N (2011) Fibrillation of flax and wheat straw cellulose: effects on thermal, morphological, and viscoelastic properties of poly(vinylalcohol)/fibre composites. BioResources 6(2):1631–1647

    CAS  Google Scholar 

  • Hubbe M, Rojas O, Lucia L, Sain M (2008) Cellulosic nanocomposites: a review. BioResources 3:929–980

    Google Scholar 

  • Huijbrechts A, Haar R, Schols H, Franssen M, Boeriu C, Sudhölter E (2010) Synthesis and application of epoxy starch derivatives. Carbohydr Polym 79:858–866

    Article  CAS  Google Scholar 

  • Jandura P, Kokta B, Riedl B (2000) Fibrous long-chain organic acid cellulose esters and their characterization by diffuse reflectance FTIR spectroscopy, solid state CP/MAS 13C-NMR, and X-ray diffraction. J Appl Polym Sci 78:1354–1365

    Article  CAS  Google Scholar 

  • Jipa IM, Dobre L, Stroescu M, Stoica-Guzun A, Jinga S, Dobre T (2012) Preparation and characterization of bacterial cellulose-poly (vinyl alcohol) films with antimicrobial properties. Mater Lett 66:125–127

    Article  Google Scholar 

  • Jonoobi M, Harun J, Mathew AP, Oksman K (2010) Mechanical properties of cellulose nanofiber (CNF) reinforced polylactic acid (PLA) prepared by twin screw extrusion. Compos Sci Technol 70:1742–1747

    Article  CAS  Google Scholar 

  • Kangas H, Lahtinen P, Sneck A, Saariaho A-M, Laitinen O, Hellen E (2014) Characterization of fibrillated celluloses. A short review and evaluation of characteristics with a combination of methods. Nordic Pulp Pap Res J 29:129–143

    Article  CAS  Google Scholar 

  • Kavaliauskaite R, Klimaviciute R, Zemaitaitis A (2008) Factors influencing production of cationic starches. Carbohydr Polym 73:665–675

    Article  CAS  Google Scholar 

  • Leitner J, Hinterstoisser B, Wastyn M, Keckes J, Gindl W (2007) Sugar beet cellulose nanofibril-reinforced composites. Cellulose 14:419–425

    Article  CAS  Google Scholar 

  • Li W, Zhao X, Huang Z, Liu S (2013) Nanocellulose fibrils isolated from BHKP using ultrasonication and their reinforcing properties in transparent poly(vinyl alcohol) films. J Polym Res 20(8):1–7

    Article  Google Scholar 

  • Lin MS, Huang CS (1992) Syntheses and characterizations of allyl cellulose and glycidyl cellulose. J Polym Sci Part A Polym Chem 30(11):2303–2312

    Article  CAS  Google Scholar 

  • Liu D, Sun X, Tian H, Maiti S, Ma Z (2013) Effects of cellulose nanofibrils on the structure and properties on PVA nanocomposites. Cellulose 20:2981–2989

    Article  CAS  Google Scholar 

  • Lu J, Wang T, Drzal LT (2008) Preparation and properties of microfibrillated cellulose polyvinyl alcohol composite materials. Compos A 39:738–746

    Article  Google Scholar 

  • Mu-Shih L, Chung-Song H (1992) Syntheses and characterizations of allyl cellulose and glycidyl cellulose. J Polym Sci A 30:2303–2312

    Article  Google Scholar 

  • Nakagaito AN, Yano H (2008) The effect of fiber content on the mechanical and thermal expansion properties of biocomposites based on microfibrillated cellulose. Cellulose 15:555–559

    Article  CAS  Google Scholar 

  • Nakagaito AN, Fujimura A, Sakai T, Hama Y, Yano H (2009) Production of microfibrillated cellulose (MFC)-reinforced polylactic acid (PLA) nanocomposites from sheets obtained by a papermaking-like process. Comp Sci Technol 69:1293–1297

    Article  CAS  Google Scholar 

  • Nichifor M, Stanciu M, Simionescu B (2010) New cationic hydrophilic and amphiphilic polysaccharides synthesized by one pot procedure. Carbohydr Polym 82:965–975

    Article  CAS  Google Scholar 

  • Nishimura M, Donkai N, Miyamoto T (1997) Preparation and properties of a new type of comb-shaped, amphiphilic cellulose derivative. Cellulose 4:89–98

    Article  CAS  Google Scholar 

  • Peresin MS, Habibi Y, Zoppe JO, Pawlak JJ, Rojas OJ (2010) Nanofiber composites of polyvinyl alcohol and cellulose nanocrystals: manufacture and characterization. Biomacromolecules 11:674–681

    Article  CAS  Google Scholar 

  • Shang Y, Peng Y (2007) Research of a PVA composite ultrafiltration membrane used in oil-in-water. Desalination 204:322–327

    Article  CAS  Google Scholar 

  • Shiramizu K, Shiga N, Magara T, Oguni K, Lin L (2012) Cellulose nanofibers, method for producing same, composite resin composition and molded body. US Patent 2012/0328877 A1

  • Siqueira G, Bras J, Dufresne A (2010) Cellulosic bionanocomposites: a review of preparation, properties and applications. Polymers 2:728–765

    Article  CAS  Google Scholar 

  • Spinu M, Dos Santos N, Le Moigne N, Navard P (2011) How does the never-dried state influence the swelling and dissolution of cellulose fibres in aqueous solvent? Cellulose 18:247–256

    Article  CAS  Google Scholar 

  • Srithep Y, Turng L-S, Sabo R, Clemons C (2012) Nanofibrillated cellulose (NFC) reinforced polyvinylalcohol (PVOH) nanocomposites: properties, solubility of carbon dioxide, and foaming. Cellulose 19:1209–1223

    Article  CAS  Google Scholar 

  • Stenstad P, Andresen M, Tanem BS, Stenius P (2008) Chemical surface modifications of microfibrillated cellulose. Cellulose 15:35–45

    Article  CAS  Google Scholar 

  • Tang C, Liu H (2008) Cellulose reinforced poly (vinyl alcohol) composite film with high visible light transmittance. Compos A 39:1638–1643

    Article  Google Scholar 

  • Tezuka Y, Tsuchiya Y, Shiomi T (1996) 13C NMR determination of substituent distribution in carboxymethylcellulose by use of its pre-esterified derivatives. Carbohydr Res 291:99–108

    Article  CAS  Google Scholar 

  • Tomasik P, Schilling C (2004) Chemical modification of starch. Adv Carbohydr Chem Biochem 59:175–403

    Article  CAS  Google Scholar 

  • Virtanen S, Vartiainen J, Setälä H, Tammelin T, Vuoti S (2014) Modified nanofibrillated cellulose-polyvinyl alcohol films with improved mechanical performance. RSC Adv 4:11343–11350

    Article  CAS  Google Scholar 

  • Vuoti S, Talja R, Johansson L-S, Heikkinen H, Tammelin T (2013) Solvent impact on esterification and film formation ability of nanofibrillated cellulose. Cellulose 20:2359–2370

    Article  CAS  Google Scholar 

  • Wan WK, Hutter JL, Millon LE, Guhados G (2006) Bacterial cellulose and its nanocomposites for biomedical applications. In: Oksman K, Sain M (eds) Cellulose nanocomposites. Processing, characterization, and properties. American Chemical Society, Washington DC

    Google Scholar 

  • Wang B, Sain M (2007) Dispersion of soybean stock-based nanofiber in a plastic matrix. Polym Int 56:538–546

    Article  CAS  Google Scholar 

  • White J, Beck L, Ferguson D, Haw J (1992) Background suppression in MAS–NMR. J Magn Res 100:336–341

    CAS  Google Scholar 

  • Wu J, Yu D, Chan C-M, Kim J, Mai Y-W (2000) Effect of fiber pretreatment condition on the interfacial strength and mechanical properties of wood fiber/PP composites. J Appl Polym Sci 76:1000–1010

    Article  CAS  Google Scholar 

  • Zhang W, Yang X, Li C, Liang M, Lu C, Deng Y (2011) Mechanochemical activation of cellulose and its thermoplastic polyvinyl alcohol ecocomposites with enhanced physicochemical properties. Carbohydr Polym 83:257–263

    Article  CAS  Google Scholar 

  • Zimmerman T, Pöhler E, Geiger T (2004) Cellulose fibrils for polymer reinforcement. Adv Eng Mater 6:754–761

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The Finnish Funding Agency for Technology and Innovation, Tekes, and companies within the Naseva II project are deeply acknowledged for their financial support. We would also like to thank UPM-Kymmene Oy for supplying the cellulose material. Finally, we would like to acknowledge Seppo Kuosmanen, Minna Kalliosaari, Marketta Hiltunen, and Eija Silvasti for their excellent laboratory assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sauli Vuoti.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Virtanen, S., Vuoti, S., Heikkinen, H. et al. High strength modified nanofibrillated cellulose-polyvinyl alcohol films. Cellulose 21, 3561–3571 (2014). https://doi.org/10.1007/s10570-014-0347-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-014-0347-7

Keywords

Navigation