Skip to main content

Advertisement

Log in

A preliminary study on the development and characterisation of enzymatically grafted P(3HB)-ethyl cellulose based novel composites

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

In the present study, a novel enzyme-based grafting of poly(3-hydroxybutyrate) [P(3HB)] onto the ethyl cellulose (EC) as a backbone polymer was developed under a mild and ecofriendly environment and laccase was used as a grafting tool. The resulting composites were characterised using various instrumental and imaging techniques. The high intensity of the 3,358 cm−1 band in the FTIR spectra showed an increase of hydrogen–bonding interactions between P(3HB) and EC at that distinct wavelength region. The morphology was examined by scanning electron microscopy, which showed the well dispersed P(3HB) in the backbone polymer of EC. X-ray diffraction pattern for P(3HB) showed distinct peaks at 2-theta values of 28°, 32°, 34°, 39°, 46°, 57°, 64°, 78° and 84°. In comparison with those of neat P(3HB), the degree of crystallinity for P(3HB)-g-EC decreased. The tensile strength, elongations at break and Young’s modulus of P(3HB)-g-EC reached the highest levels in comparison to the film prepared with pure P(3HB) only, which was too brittle to measure any of the above said characteristics. Results obtained in the present study suggest P(3HB)-g-EC as a potential candidate for various biotechnological applications, such as tissue engineering and packaging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Akaraonye E, Keshavarz T, Roy I (2010) Production of polyhydroxyalkanoates: the future green materials of choice. J Chem Technol Biotechnol 85(6):732–743

    Article  CAS  Google Scholar 

  • Aljawish A, Chevalot I, Piffaut B, Rondeau-Mouro C, Girardin M, Jasniewski J, Muniglia L (2012) Functionalization of chitosan by laccase-catalyzed oxidation of ferulic acid and ethyl ferulate under heterogeneous reaction conditions. Carbohydr Polym 87(1):537–544

    Article  CAS  Google Scholar 

  • Barham PJ, Keller A, Otun EL, Holmes PA (1984) Crystallization and morphology of a bacterial thermoplastic: poly-3-hydroxybutyrate. J Mater Sci 19(9):2781–2794

    Article  CAS  Google Scholar 

  • Bhardwaj R, Mohanty AK, Drzal LT, Pourboghrat F, Misra M (2006) Renewable resource-based green composites from recycled cellulose fiber and poly (3-hydroxybutyrate-co-3-hydroxyvalerate) bioplastic. Biomacromolecules 7(6):2044–2051

    Article  CAS  Google Scholar 

  • Dai Y, Lambert L, Yuan Z, Keller J (2008) Characterisation of polyhydroxy-alkanoate copolymers with controllable four-monomer composition. J Biotechnol 134(1):137–145

    Article  CAS  Google Scholar 

  • Herrmann AS, Nickel J, Riedel U (1998) Construction materials based upon biologically renewable resources-from components to finished parts. Polym Degrad Stab 59(1–3):251–261

    Article  CAS  Google Scholar 

  • Hooshmand S, Aitomäki Y, Skrifvars M, Mathew AP, Oksman K (2014) All-cellulose nanocomposite fibers produced by melt spinning cellulose acetate butyrate and cellulose nanocrystals. Cellulose. doi:10.1007/s10570-014-0269-4

    Google Scholar 

  • Iqbal HMN, Kyazze G, Keshavarz T (2013) Advances in the valorization of lignocellulosic materials by biotechnology: an overview. BioResources 8(2):3157–3176

    Article  Google Scholar 

  • Joshi JM, Sinha VK (2006) Graft copolymerization of 2-hydroxyethylmethacrylate onto carboxymethyl chitosan using CAN as an initiator. Polymer 47(6):2198–2204

    Article  CAS  Google Scholar 

  • Lao H-K, Renard E, Linossier I, Langlois V, Rehel KV (2007) Modification of Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) film by chemical graft copolymerization. Biomacromolecules 8:416–423

    Article  CAS  Google Scholar 

  • Lin N, Huang J, Chang PR, Feng J, Yu J (2011) Surface acetylation of cellulose nanocrystal and its reinforcing function in poly(lactic acid). Carbohydr Polym 83:1834–1842

    Article  CAS  Google Scholar 

  • Liu QS, Zhu MF, Wu WH, Qin ZY (2009) Reducing the formation of six-membered ring ester during thermal degradation of biodegradable PHBV to enhance its thermal stability. Polym Degrad Stab 94:18–24

    Article  CAS  Google Scholar 

  • Luo L, Wei X, Chen GQ (2009) Physical properties and biocompatibility of poly (3-hydroxybutyrate-co-3-hydroxyhexanoate) Blended with Poly (3-hydroxybutyrate-co-4-hydroxybutyrate). J Biomater Sci Polym Edition 20(11):1537–1553

    Article  CAS  Google Scholar 

  • Miao C, Hamad WY (2013) Cellulose reinforced polymer composites and nanocomposites: a critical review. Cellulose 20(5):2221–2262

    Article  CAS  Google Scholar 

  • Mohammed-Ziegler I, Tánczos I, Hórvölgyi Z, Agoston B (2008) Water-repellent acylated and silylated wood samples and their surface analytical characterization. Colloids Surf A Physicochem Eng Asp 319(1):204–212

    Article  CAS  Google Scholar 

  • Rai R, Yunos DM, Boccaccini AR, Knowles JC, Barker IA, Howdle SM, Tredwell GD, Keshavarz T, Roy I (2011) Poly-3-hydroxyoctanoate P (3HO), a medium chain length polyhydroxyalkanoate homopolymer from Pseudomonas mendocina. Biomacromolecules 12(6):2126–2136

    Article  CAS  Google Scholar 

  • Richardson TB, Mosiewicki MA, Uzunpinar C, Marcovich NE, Aranguren MI, Kilinc-Balci F (2011) Study of nanoreinforced shape memory polymers processed by casting and extrusion. Polym Comp 32:455–463

    Article  CAS  Google Scholar 

  • Riva S (2006) Laccases: blue enzymes for green chemistry. Trends Biotechnol 24:219–226

    Article  CAS  Google Scholar 

  • Srubar WV III, Pilla S, Wright ZC, Ryan CA, Greene JP, Frank CW, Billington SL (2012) Mechanisms and impact of fiber matrix compatibilization techniques on the material characterization of PHBV/oak wood flour engineered bio-based composites. Comp Sci Technol 72:708–715

    Article  CAS  Google Scholar 

  • Tokoh C, Takabe K, Fujita M, Saiki H (1998) Cellulose synthesized by Acetobacter xylinum in the presence of acetyl glucomannan. Cellulose 5(4):249–261

    Article  CAS  Google Scholar 

  • Wu QJ, Henriksson M, Liu X, Berglund LA (2007) A high strength nanocomposite based on microcrystalline cellulose and polyurethane. Biomacromolecules 8:3687–3692

    Article  CAS  Google Scholar 

  • Yu L, Dean K, Li L (2006) Polymer blends and composites from renewable resources. Prog Polym Sci 31(6):576–602

    Article  CAS  Google Scholar 

  • Yu HY, Qin ZY, Wang LF, Zhou Z (2012) Crystallization behavior and hydrophobic properties of biodegradable ethyl cellulose-g-poly (3-hydroxybutyrate-co-3-hydroxyvalerate): the influence of the side-chain length and grafting density. Carbohydr Polym 87(4):2447–2454

    Article  CAS  Google Scholar 

  • Yuan W, Yuan J, Zhang F, Xie X (2007) Syntheses, characterization, and in vitro degradation of ethyl cellulose-graft-poly(l-caprolactone)-block-poly(l-lactide) copolymers by sequential ring-opening polymerization. Biomacromolecules 8:1101–1108

    Article  CAS  Google Scholar 

  • Zhang L, Deng X, Huang Z (1997) Miscibility thermal behavior and morpho-logical structure of poly(3-hydroxybutyrate) and ethyl cellulose binary blends. Polymer 38:5379–5387

    Article  CAS  Google Scholar 

  • Zhijiang C, Guang Y, Kim J (2011) Biocompatible nanocomposites prepared by impregnating bacterial cellulose nanofibrils into poly (3-hydroxybutyrate). Curr Appl Phy 11(2):247–249

    Article  Google Scholar 

  • Zhu J, Dong XT, Wang XL, Wang YZ (2010) Preparation and properties of a novel biodegradable ethyl cellulose grafting copolymer with poly(p-dioxanone) side-chains. Carbohydr Polym 80:350–359

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the Cavendish Research Scholarship provided by the University of Westminster, London, UK. On providing the support and laboratory facilities for the material characterisation and SEM analysis of the composite films, Drs. Jonathan C. Knowles, George Georgiou and Nicola Mordan (Division of Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, 256 Grays Inn Road, London WC1X 8LD, UK) are thankfully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hafiz M. N. Iqbal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iqbal, H.M.N., Kyazze, G., Tron, T. et al. A preliminary study on the development and characterisation of enzymatically grafted P(3HB)-ethyl cellulose based novel composites. Cellulose 21, 3613–3621 (2014). https://doi.org/10.1007/s10570-014-0337-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-014-0337-9

Keywords

Navigation