Skip to main content
Log in

Cellulose–silica composite aerogels from “one-pot” synthesis

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Cellulose–silica composite aerogels were prepared via “one-pot” process: aqueous solutions of cellulose–8 wt% NaOH and sodium silicate were mixed, coagulated and dried with supercritical CO2. The system was studied both in the fluid and solid (dry) states. Cellulose and sodium silicate solutions were mixed at different temperatures and concentrations; mixture properties were monitored using dynamic rheology. The gelation time of the mixture was strongly reduced as compared to that of cellulose–NaOH solutions; we interpret this phenomenon as cellulose self-aggregation inducing partial coagulation due to competition for the solvent with sodium silicate. The gelled cellulose/sodium silicate samples were placed in aqueous acid solution which completed cellulose coagulation and led to in situ formation of sub-micronic silica particles trapped in a porous cellulose matrix. After drying with supercritical CO2, an organic–inorganic aerogel composite was formed. The densities obtained were in the range of 0.10–0.25 g/cm3 and the specific surface area was between 100 and 200 m2/g. The silica phase was shown to have a reinforcing effect on the cellulose aerogel, increasing its Young’s modulus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Aaltonen O, Jauhiainen O (2009) The preparation of lignocellulosic aerogels from ionic liquid solutions. Carbohydr Polym 75:125–129

    Article  CAS  Google Scholar 

  • Alaoui AH, Woignier T, Scherer GW, Phalippou J (2008) Comparison between flexural and uniaxial compression tests to measure the elastic modulus of silica aerogel. J Non-Cryst Solids 354:4556–4561

    Article  CAS  Google Scholar 

  • Cai J, Kimura S, Wada M, Kuga S (2009) Nanoporous cellulose as metal nanoparticles support. Biomacromolecules 10:87–94

    Article  CAS  Google Scholar 

  • Cai J, Liu J, Feng J, Kimura S, Wada M, Kuga S, Zhang L (2012) Cellulose–silica nanocomposite aerogels by in situ formation of silica in cellulose gel. Angew Chem 51:2076–2079

    Article  CAS  Google Scholar 

  • Egal M, Budtova T, Navard P (2007) Structure of aqueous solutions of microcrystalline cellulose–sodium hydroxide below 0 C and the limit of cellulose dissolution. Biomacromolecules 8:2282–2287

    Article  CAS  Google Scholar 

  • Gavilon R, Budtova T (2008) Aerocellulose: new highly porous cellulose prepared from cellulose–NaOH aqueous solutions. Biomacromolecules 9:269–277

    Article  Google Scholar 

  • Gross J, Fricke J (1992) Ultrasonic velocity-measurements in silica, carbon and organic aerogels. J Non-Cryst Solids 145:217–222

    Article  CAS  Google Scholar 

  • Gross J, Reichenauer G, Fricke J (1988) Mechanical properties of SiO2 aerogels. J Phys D-Appl Phys 21:1447–1451

    Article  CAS  Google Scholar 

  • Hou A, Shi Y, Yu Y (2009) Preparation of the cellulose/silica hybrid containing cationic group by sol–gel crosslinking process and its dyeing properties. Carbohydr Polym 77:201–205

    Article  CAS  Google Scholar 

  • Innerlohinger J, Weber HK, Kraft G (2006) Aerocellulose: aerogels and aerogel-like materials made from cellulose. Macromol Symp 244:126–135

    Article  CAS  Google Scholar 

  • Kistler SS (1932) Coherent expanded aerogels. J Phys Chem 36:52–64

    Article  CAS  Google Scholar 

  • Liebner F, Haimer E, Potthast A, Loidl D, Tschegg S, Neouze MA, Wendland M, Rosenau T (2009) Cellulosic aerogels as ultra-lightweight materials. Part 2: synthesis and properties. Holzforschung 63:3–11

    Article  CAS  Google Scholar 

  • Litschauer M, Neouze M-A, Haimer E, Henniges U, Potthast A, Rosenau T, Liebner F (2011) Silica modified cellulosic aerogels. Cellulose 18:143–149

    Article  CAS  Google Scholar 

  • Liu J, Huang W, Xing Y, Li R, Dai J (2011a) Preparation of durable superhydrophobic surface by sol–gel method with water glass and citric acid. Sol Gel Sci Technol 58:18–23

    Article  CAS  Google Scholar 

  • Liu W, Budtova T, Navard P (2011b) Influence of ZnO on the properties of dilute and semi-dilute cellulose–NaOH–water solutions. Cellulose 8:911–920

    Article  Google Scholar 

  • Liu S, Yu Y, Hu N, Liu R, Liu X (2013) High strength cellulose aerogels prepared by spatially confined synthesis of silica in bioscaffolds. Colloids Surf A Physicochem Eng 439:159–166

    Article  CAS  Google Scholar 

  • Lu A, Liu Y, Zhang L, Potthast A (2011) Investigation on metastable solution of cellulose dissolved in NaOH/urea aqueous system at low temperature. J Phys Chem B 115:12801–12808

    Article  CAS  Google Scholar 

  • Maeda H, Nakajima M, Hagiwara T, Sawaguchi T, Yano S (2006) Bacterial cellulose/silica hybrid fabricated by mimicking biocomposites. J Mater Sci 41:5646–5656

    Article  CAS  Google Scholar 

  • Masmoudi Y, Rigacci A, Ilbizian P, Achard P (2006) Diffusion during the supercritical drying of silica gels. Drying Technol 24:1121–1125

    Article  CAS  Google Scholar 

  • Pinto RJB, Marques P, Barros-Timmons AM, Trindade T, Neto CP (2008) Novel SiO2/cellulose nanocomposites obtained by in situ synthesis and via polyelectrolytes assembly. Compos Sci Technol 68:1088–1093

    Article  CAS  Google Scholar 

  • Rooke J, Matos Passos C, Chatenet M, Sescousse R, Budtova T, Berthon-Fabry S, Mosdale R, Maillard F (2011) Synthesis and properties of platinum nanocatalyst supported on cellulose-based carbon aerogel for applications in PEMFCs. J Electrochem Soc 158(7):B779–B789

    Article  CAS  Google Scholar 

  • Roy C, Budtova T, Navard P (2003) Rheological properties and gelation of aqueous cellulose–NaOH solutions. Biomacromolecules 4:259–264

    Article  CAS  Google Scholar 

  • Sequeira S, Evtuguin DV, Portugal I (2009) Preparation and properties of cellulose/silica hybrid composites. Polym Compos 30:1275–1282

    Article  CAS  Google Scholar 

  • Sescousse R, Smacchia A, Budtova T (2010) Influence of lignin on cellulose–NaOH–water mixtures properties and on Aerocellulose morphology. Cellulose 17:1137–1146

    Article  CAS  Google Scholar 

  • Sescousse R, Gavillon R, Budtova T (2011a) Aerocellulose from cellulose–ionic liquid solutions: preparation, properties and comparison with cellulose–NaOH and cellulose–NMMO routes. Carbohydr Polym 83:1766–1774

    Article  CAS  Google Scholar 

  • Sescousse R, Gavillon R, Budtova T (2011b) Wet and dry highly porous cellulose beads from cellulose–NaOH–water solutions: influence of the preparation conditions on beads shape and encapsulation of inorganic particles. J Mater Sci 46:759–765

    Article  CAS  Google Scholar 

  • Tsioptsias C, Stefopoulos A, Kokkinomalis I, Papadopoulou P, Panayiotou C (2008) Development of micro- and nano-porous composite materials by processing cellulose with ionic liquids and supercritical CO2. Green Chem 10:965–971

    Article  CAS  Google Scholar 

  • Wong JCH, Kaymak H, Brunner S, Koebel MM (2014) Mechanical properties of monolithic silica aerogels made from polyethoxydisiloxanes. Microporous Mesoporous Mater 183:23–29

    Article  CAS  Google Scholar 

  • Xie K, Yu Y, Shi Y (2009) Synthesis and characterization of cellulose/silica hybrid materials with chemical crosslinking. Carbohydr Polym 78:799–805

    Article  CAS  Google Scholar 

  • Yang Q, Qin X, Zhang L (2011) Properties of cellulose films prepared from NaOH/urea/zincate aqueous solution at low temperature. Cellulose 18:681–688

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Research leading to these results were funded within the 7th EU Framework Program, (FP7/2007-2013), under grant agreement no. 260141, AEROCOINS project. Authors thank Pierre Ilbizian (PERSEE, MINES ParisTech) for supercritical drying and Suzanne Jacomet (CEMEF, MINES ParisTech) for help in SEM experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tatiana Budtova.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Demilecamps, A., Reichenauer, G., Rigacci, A. et al. Cellulose–silica composite aerogels from “one-pot” synthesis. Cellulose 21, 2625–2636 (2014). https://doi.org/10.1007/s10570-014-0314-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-014-0314-3

Keywords

Navigation