Skip to main content
Log in

Effects of nitren extraction on a dissolving pulp and influence on cellulose dissolution in NaOH–water

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

A commercial dissolving pulp was treated with aqueous solutions containing 3, 5 and 7 % of an organometalic complex (nitren) with the aim to selectively extract xylan and study its impact on the conventional physical–chemical properties of the pulp. The influence of these treatments on the pulp dissolution in a moderate solvent (8 % NaOH aqueous solution) was assessed by measuring the dissolution yields and the dissolution mechanisms. The results of this study show that nitren treatment has the effect of removing a large part of the xylan present in a dissolving pulp. It is also removing mannans and most important, it is influencing cellulose in two ways, (1) extracting it with more intensity when the nitren concentration increases, and (2) decreasing its mean molecular mass, also more evident with nitren concentration increase. The nitren extractions are favourable for the dissolution in cold NaOH–water, being more effective with higher concentrations. This chemical modification of the fiber surface leads to the disassembly of the primary wall. This allows an easier access of the NaOH reagent to regions not accessible on the initial fibres, which with the decrease of the cellulose molecular weight allows an easier dissolution and gives different dissolution mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Boerstel H, Maatman H, Westerink JB, Koenders BM (2001) Liquid crystalline solutions of cellulose in phosphoric acid. Polymer 42:7371–7379

    Article  Google Scholar 

  • British Celanese (1925) GB 263810

  • Cai J, Zang L (2005) Rapid dissolution of cellulose in LiOH/urea and NaOH: urea aqueous solutions. Macromol Biosci 5:539–548

    Article  CAS  Google Scholar 

  • Cai J, Zhang L, Liu S, Liu Y, Xu X, Chen X, Chu B, Guo X, Xu J, Cheng H, Han C, Kuga S (2008) Dynamic self-assembly induced rapid dissolution of cellulose at low temperatures. Macromolecules 41:9345–9351

    Article  CAS  Google Scholar 

  • Ciechańska D, Gallas E, Struszczyk H (1996) Biotransformation of cellulose. Fibers Text East Eur 1(15):148

    Google Scholar 

  • Copur Y, Makkonen H (2007) Precision and accuracy studies with Kajaani fiber length analyzers. J Appl Sci 7–7:1043–1047

    Google Scholar 

  • Cross CF, Bevan EJ, Beadle C (1892) British Patent 8700

  • Cuissinat C, Navard P (2006a) Swelling and dissolution of cellulose, Part I: free floating cotton and wood fibers in N-methylmorpholine-N-oxide-water mixtures. Macromol Symp 244:1–18

    Article  CAS  Google Scholar 

  • Cuissinat C, Navard P (2006b) Swelling and dissolution of cellulose, Part II: free floating cotton and wood fibers in NaOH water-additives systems. Macromol Symp 244:19–30

    Article  CAS  Google Scholar 

  • Davidson GF (1934) The dissolution of chemically modified cotton cellulose in alkaline solutions. Part 1: in solutions of NaOH, particularly at T C below the normal. J Text I 25:174–196

    Google Scholar 

  • Davidson GF (1936) The dissolution of chemically modified cotton cellulose in alkaline solutions. Part 2: a comparison of the solvent action of solutions of Lithium, Sodium, Potassium and tetramethylammonium hydroxides. J Text I 27:112–130

    CAS  Google Scholar 

  • Davidson GF (1937) The dissolution of chemically modified cotton cellulose in alkaline solutions. Part 3: in solutions of sodium and potassium hydroxide containing dissolved zinc, beryllium and aluminum oxides. J Text I 28–2:27–44

    Google Scholar 

  • Egal M (2006) Structure and properties of cellulose/NaOH aqueous solutions, gels and regenerated objects. PhD thesis, Ecole des Mines de Paris/Cemef

  • Egal M, Budtova T, Navard P (2007) Structure of aqueous solutions of microcrystalline cellulose/sodium hydroxide below 0 C and the limit of cellulose dissolution. Biomacromolecules 8:2282–2287

    Article  CAS  Google Scholar 

  • Egal M, Budtova T, Navard P (2008) The dissolution of microcrystalline cellulose in sodium hydroxide-urea aqueous solutions. Cellulose 15:361–370

    Article  CAS  Google Scholar 

  • Feng L, Chen ZL (2008) Research progress on dissolution and functional modification of cellulose in ionic liquids. J Mol Liq 142:1–5

    Article  Google Scholar 

  • Fink H-P, Weigel P, Purz H-J (1998) Formation of lyocell-type fibers with skin-core structure. Lenz Ber 78:41–44

    CAS  Google Scholar 

  • Fink H-P, Weigel P, Purz HJ, Ganster J (2001) Structure formation of regenerated cellulose materials from NMMO-solutions. Progr Polym Sci 26–9:1473–1524

    Article  Google Scholar 

  • Firgo H, Eibl K, Kalt W, Meister G (1994) Kritishe fragen zur zukunft der NMMO-technologie. Lenz Ber 9:81–90

    Google Scholar 

  • Franks NA, Varga JK (1979) Process for making precipitated cellulose. US Patent 4,145,532

  • Gavillon R, Budtova T (2007) Kinetics of cellulose regeneration from cellulose-NaOH-water gels and comparison with cellulose-N-methylmorpholine–N-oxyde-water solutions. Biomacromolecules 8:424–432

    Article  CAS  Google Scholar 

  • Gavillon R, Budtova T (2008) Aerocellulose: new highly porous cellulose prepared from cellulose-NaOH aqueous solutions. Biomacromolecules 9:269–277

    Article  CAS  Google Scholar 

  • Graenacher C (1934) Cellulose solution, US patent 1,943,176, 9 January 1934

  • Graenacher C, Sallman R (1939) Cellulose solutions. US Patent 2,179,181

  • Harrison W (1928) Manufacture of carbohydrate derivatives. US Patent 1,684,732

  • Hill JW, Jacobsen RA (1938) US patent 2,134,825

  • Isogai A, Atalla RH (1998) Dissolution of cellulose in aqueous NaOH solutions. Cellulose 5:309–319

    Article  CAS  Google Scholar 

  • Janzon R, Puls J, Saake B (2006) Upgrading of paper-grade pulps to dissolving pulps by nitren extraction: optimisation of extraction parameters and application to different pulps. Holzforschung 60–4:347–354

    Google Scholar 

  • Janzon R, Saake B, Puls J (2008a) Upgrading of paper-grade pulps to dissolving pulps by nitren extraction: properties of nitren extracted xylans in comparison to NaOH and KOH extracted xylans. Cellulose 15–1:161–175

    Article  Google Scholar 

  • Janzon R, Puls J, Bohn A, Potthast A, Saake B (2008b) Upgrading of paper grade pulps to dissolving pulps by nitren extraction: yields, molecular and supramolecular structures of nitren extracted pulps. Cellulose 15–5:739–750

    Article  Google Scholar 

  • Johnson DL (1969) Compounds dissolved in cyclic amine oxides. US Patent 3,447,939

  • Kamide K, Okajima K, Matsui T, Kowsaka K (1984) Study on the solubility of cellulose in aqueous alkali solution by deuteration IR and 13C NMR. Polym J 16–12:857–866

    Article  Google Scholar 

  • Kamide K, Yasuda K, Matsui T, Okajima K, Yamashiki T (1990) Structural change in alkali-soluble cellulose solid during its dissolution into alkaline solutions. Cell Chem Technol 24:23–31

    CAS  Google Scholar 

  • Kamide K, Okajima K, Kowsaka K (1992) Dissolution of natural cellulose into aqueous alkali solution: role of super-molecular structure of cellulose. Polym J 24–1:71–96

    Article  Google Scholar 

  • Kettenbach G, Stein A (2007) Method for separating hemicelluloses from a biomass containing hemicelluloses and biomass and hemicelluloses obtained by said method US patent 7,198,695, assigned to Rhodia Acetow GmbH, Germany

  • Kosan B, Michels C, Meister F (2008) Dissolution and forming of cellulose with ionic liquids. Cellulose 15:59–66

    Article  CAS  Google Scholar 

  • Kunze J, Fink HP (2005) Structural changes and activation of cellulose by caustic soda solution with urea. Macromol Symp 223:175–187

    Article  CAS  Google Scholar 

  • Laszkiewicz B (1998) Solubility of bacterial cellulose and its structural properties. J Appl Polym Sci 67:1871–1876

    Article  CAS  Google Scholar 

  • Laszkiewicz B, Cuculo JA (1993) Solubility of cellulose III in sodium hydroxide solution. J Appl Polym Sci 50:27–34

    Article  Google Scholar 

  • Laszkiewicz B, Wcislo P (1990) Sodium cellulose formation by activation process. J Appl Polym Sci 39:415–425

    Article  CAS  Google Scholar 

  • LeMoigne N, Navard P (2010) Dissolution mechanisms of wood cellulose fibers in NaOH-water. Cellulose 17:31–45

    Article  CAS  Google Scholar 

  • LeMoigne N, Jardeby K, Navard P (2010) Structural changes and alkaline solubility of wood cellulose fibers after enzymatic peeling treatment. Carbohydr Polym 79(2):325–332

    Article  CAS  Google Scholar 

  • Liebert TF (2010) Cellulose solvents-remarkable history, bright future. In: Liebert TF, Heinze TJ, Edgar KJ (eds) Cellulose solvents: for analysis, shaping and chemical modification, ACS symposium series 1033. Oxford Press University, Oxford, pp 3–54

    Chapter  Google Scholar 

  • Lin C-X, Zhan H-Y, Liu M-H, Fu S-Y, Lucia LA (2009) Novel preparation and characterisation of cellulose microparticles functionalised in ionic liquids. Langmuir 25:10116–10120

    Article  CAS  Google Scholar 

  • Liu W, Budtova T, Navard P (2011) Influence of ZnO on the properties of dilute and semi-dilute cellulose-NaOH-water solutions. Cellulose 18:911–920

    Article  CAS  Google Scholar 

  • Lu A, Liu Y, Zhang L, Potthast A (2011) Investigation on metastable solution of cellulose dissolved in NaOH/urea aqueous system at low temperature. J Phys Chem B 115:12801–12808

    Article  CAS  Google Scholar 

  • Lue A, Liu Y, Zhang L, Potthast A (2011) Light scattering study on the dynamic behaviour of cellulose inclusion complex in LiOH/urea aqueous solution. Polymer 52:3857–3864

    Article  CAS  Google Scholar 

  • McCorsley III CC, Varga JK (1979) A process for making a precursor of a solution of cellulose. US 4142913

  • Navard P, Wendler F, Meister F, Bercea M, Budtova T (2013) Preparation and properties of cellulose solutions In: Navard P (Ed) The European polysaccharide network of excellence (EPNOE). Research initiatives and results, Chap. 4

  • Northolt MG, Boerstel H, Maatman H, Huisman R, Veurink J, Elzerman H (2001) The structure and properties of cellulose fibers spun from an anisotropic phosphoric acid solution. Polymer 42:8249–8264

    Article  CAS  Google Scholar 

  • Östberg L (2012) The influence of the hemicellulose content in dissolving pulps on the gamma number of viscose dopes. In Some aspects on pulp pre-treatment prior to viscose preparation. Licentiate thesis. Faculty of Technology and Science, Chemical Engineering, Karlstad University, Sweden. Karstad Studies 2012:23. ISBN 978-91-7063-427-7

  • Puls J, Janzon R, Saake B (2006) Comparative removal of hemicelluloses from paper pulps using nitren, cuen, NAOH and KOH. Lenz Ber 86:63–70

    CAS  Google Scholar 

  • Qi H, Chang C, Zhang L (2008) Effects of temperature and molecular weight on dissolution of cellulose in NaOH/urea aqueous solutions. Cellulose 15:779–787

    Google Scholar 

  • Röhrling J, Potthast A, Rosenau T, Langue T, Ebner G, Sixta H, Kosma P (2002) A novel method for the determination of carbonyl groups in cellulosics by fluorescence labeling. 1. Method development. Biomacromolecules 33–5:959–968

    Article  Google Scholar 

  • Rosenau T, Potthast A, Sixta H, Kosma P (2001) The chemistry of side reactions and by-product formation in the system NMMO/cellulose (Lyocell process). Prog Polym Sci 26:1763–1837

    Article  CAS  Google Scholar 

  • Roy C, Budtova T, Navard P, Bedue O (2001) Structure of cellulose-soda solutions at low temperatures. Biomacromolecules 2:687–693

    Article  CAS  Google Scholar 

  • Roy C, Budtova T, Navard P (2003) Rheological properties and gelation of aqueous cellulose-NaOH solutions. Biomacromolecules 4:259–264

    Article  CAS  Google Scholar 

  • Sescousse R, Budtova T (2009) Influence of processing parameters on regeneration kinetics and morphology of porous cellulose from cellulose-NaOH-water solutions. Cellulose 16:417–426

    Article  CAS  Google Scholar 

  • Sescousse R, Gavillon R, Budtova T (2011a) Aerocellulose from cellulose-ionic liquid solutions: preparation, properties and comparison with cellulose-NaOH and cellulose-NMMO routes. Carbohyd Polym 83:1766–1774

    Article  CAS  Google Scholar 

  • Sescousse R, Gavillon R, Budtova T (2011b) Wet and dry highly porous cellulose beads from cellulose-NaOH-water solutions: influence of the preparation conditions on beads shape and encapsulation of inorganic particles. J Mater Sci 46:759–765

    Article  CAS  Google Scholar 

  • Sixta H (2006) Pulp properties and applications. In: Sixta H (ed) Handbook of pulp. Wiley-VCH Verlag GmbH &Co, Weinheim, pp 1009–1068

    Chapter  Google Scholar 

  • Sobue H, Kiessig H, Hess K (1939) The cellulose-sodium hydroxide-water system as a function of the temperature. Z Physik Chem B 43:309–328

    Google Scholar 

  • Spinu M, Dos Santos N, Le Moigne N, Navard P (2011) How does the never-dried state influence the swelling and dissolution of cellulose fibres in aqueous solvent? Cellulose 18:247–256

    Article  CAS  Google Scholar 

  • Sprague BS, Noether HD (1961) The relationship of fine structure to mechanical properties of stretched saponified acetate fibers. Text Res J 31:858–865

    Article  CAS  Google Scholar 

  • Swatloski RP, Spear SK, Holbrey JD, Rogers RD (2002) Dissolution of cellulose with ionic liquids. J Am Chem Soc 124:4974–4975

    Article  CAS  Google Scholar 

  • Tsioptsias C, Stefopoulos A, Kokkinomalis I, Papadopoulou L, Panayiotou C (2008) Development of micro- and nano-porous composite materials by processing of cellulose with ionic liquids and supercritical CO2. Green Chem 10:965–971

    Article  CAS  Google Scholar 

  • Turbak AF, Hammer RB, Davies RE, Hergert HL (1980) Cellulose solvents. ChemTech 10:51–57

    CAS  Google Scholar 

  • Turner MB, Spear SK, Holbrey JD, Rogers RD (2004) Production of bioactive cellulose films reconstituted from ionic liquids. Biomacromolecules 5:1379–1384

    Article  CAS  Google Scholar 

  • Vehviläinen M, Kamppuri T, Rom M, Janicki J, Ciechanska D, Grönqvist S, Sioika-Aho M, Christoffersson K, Nousiainen P (2008) Effect of wet spinning parameters on the properties of novel cellulosic fibers. Cellulose 15:671–680

    Article  Google Scholar 

  • Warwicker JO, Jeffries R, Colbran RL, Robinson RN (1966) A review of the literature on the effect of caustic soda and other swelling agents on the fine structure of cotton. St Ann’s Press, Shirley Institute, Pamphlet, Manchester, p 93

    Google Scholar 

  • Wawro D, Stęplewski W, Bodek A (2009) Manufacture of cellulose fibers from alkaline solutions of hydrothermally-treated cellulose pulp. Fibers Text East Eur 17:18–22

    CAS  Google Scholar 

  • Willfor S, Pranovich A, Tamminen T, Puls J, Laine C, Suurnakki A, Saake B, Uotila K, Simolin H, Hemming J, Holmbom B (2009) Carbohydrate analysis of plant materials with uronic acid-containing polysaccharides-A comparison between different hydrolysis and subsequent chromatographic analytical techniques. Ind Crop Prod 29:571–580

    Article  Google Scholar 

  • Yamane C, Saito M, Okajima K (1996) Industrial preparation method of cellulose-alkali dope with high solubility. Sen’I Gakkaaishi 52–6:310–317

    Article  Google Scholar 

  • Yamashiki T, Kamide K, Okajima K, Kowsaka K, Matsui T, Fukase H (1988) Some characteristic features of dilute aqueous alkali solutions of specific alkali concentration (2.5 mol l-1) which possess maximum solubility power against cellulose. Polym J 20–6:447–457

    Article  Google Scholar 

  • Zhang H, Wu J, Zhang J, He J (2005) 1-Allyl-3-methylimidazolium chloride room temperature ionic liquid: a new and powerful nonderivatizing solvent for cellulose. Macromolecules 38:8272–8277

    Article  CAS  Google Scholar 

  • Zhao Q, Yam RCM, Zhang B, Yang Y, Cheng X, Li RKY (2009) Novel all-cellulose ecocomposites prepared in ionic liquids. Cellulose 16:217–226

    Article  CAS  Google Scholar 

  • Zhou J, Zhang L (2000) Solubility of cellulose in NaOH/Urea aqueous solution. Polym J 32–10:866–870

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Viskase (France and USA), Spontex (France), Sappi (South Africa), Tembec (France and Canada) and Lenzing (Austria) for having supported this project.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bodo Saake or Patrick Navard.

Additional information

Instiutions are the members of the European Polysaccharide Network of Excellence (www.epnoe.eu).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Santos, N.M., Puls, J., Saake, B. et al. Effects of nitren extraction on a dissolving pulp and influence on cellulose dissolution in NaOH–water. Cellulose 20, 2013–2026 (2013). https://doi.org/10.1007/s10570-013-9971-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-013-9971-x

Keywords

Navigation