Skip to main content

Advertisement

Log in

Surface modification of cellulose nanocrystal with chitosan oligosaccharide for drug delivery applications

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

A novel drug delivery system based on two of the most abundant natural biopolymers was developed by modifying the surface of oxidized cellulose nanocrystal (CNC) with chitosan oligosaccharide (CSOS). First, the primary alcohol moieties of CNC were selectively oxidized to carboxyl groups using the 2,2,6,6-tetramethylpiperidine-1-oxyl radical catalyst. The amino groups of CSOS were then reacted with carboxylic acid groups on oxidized CNC (CNC-OX) via the carbodiimide reaction using N-hydroxysuccinimide and 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide as coupling agents. Successful grafting of CSOS to CNC-OX was confirmed by infrared spectroscopy, thermogravimetry, potentiometric titration, and zeta potential measurements. The grafting resulted in a conversion of ~90 % carboxyl groups on CNC-OX and the degree of substitution was 0.26. CNC–CSOS nanoparticles showed a binding efficiency of 21.5 % and a drug loading of 14 % w/w. A drug selective electrode was used to directly measure the concentration of procaine hydrochloride released from CNC–CSOS particles. The in vitro drug release was studied at pH 8 and the nanoparticles revealed a fast release of up to 1 h, which can be used as biocompatible and biodegradable drug carriers for transdermal delivery applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Aggarwal P, Dollimore D (1997) The combustion of starch, cellulose and cationically modified products of these compounds investigated using thermal analysis. Thermochim Acta 291:65–72

    Article  CAS  Google Scholar 

  • Araki J, Wada M, Kuga S (2001) Steric stabilization of a cellulose microcrystal suspension by poly (ethylene glycol) grafting. Cellulose 17:21–27

    CAS  Google Scholar 

  • Azizi Samir MAS, Alloin F, Dufresne A (2005) Review of recent research into cellulosic whiskers, their properties and their application in nanocomposite field. Biomacromolecules 6:612–626

    Article  Google Scholar 

  • Azzam F, Heux L, Putaux JL, Jean B (2010) Preparation by grafting onto, characterization, and properties of thermally responsive polymer-decorated cellulose nanocrystals. Biomacromolecules 11:3652–3659

    Article  CAS  Google Scholar 

  • Bhattarai N, Ramay HR, Gunn J, Matsen FA, Zhang MJ (2005) PEG-grafted chitosan as an injectable thermosensitive hydrogel for sustained protein release. J Controlled Release 103:609–624

    Article  CAS  Google Scholar 

  • Bondeson D, Mathew A, Oksman K (2006) Optimization of the isolation of nanocrystals from microcrystalline cellulose by acid hydrolysis. Cellulose 13:171–180

    Article  CAS  Google Scholar 

  • Bragd PL, van Bekkum H, Besemer AC (2004) TEMPO-mediated oxidation of polysaccharides: survey of methods and applications. Top Catal 27:49–66

    Article  CAS  Google Scholar 

  • Brocchini S, Duncan R (1999) Encyclopaedia of controlled drug delivery. Wiley, New York, p 786

    Google Scholar 

  • Bulpitt P, Aeschlimann D (1999) New strategy for chemical modification of hyaluronic acid: preparation of functionalized derivatives and their use in the formation of novel biocompatible hydrogels. J Biomed Mater Res 47:152–169

    Article  CAS  Google Scholar 

  • Cai Z, Kim J (2008) Characterization and electromechanical performance of cellulose–chitosan blend electro-active paper. Smart Mater Struct 17:1–8

    Article  Google Scholar 

  • Chae SY, Son S, Lee M, Jang MK, Nah JW (2005) Deoxycholic acid-conjugated chitosan oligosaccharide nanoparticles for efficient gene carrier. J Controlled Release 109:330–344

    Article  CAS  Google Scholar 

  • Chen Y, Mcculloch R, Gray B (1994) Synthesis of albumin-dextran sulfate microspheres possessing favourable loading and release characteristics for the anticancer drug doxorubicin. J Controlled Release 31:49–54

    Article  CAS  Google Scholar 

  • Claesson PM, Ninham BW (1992) pH-dependent interactions between adsorbed chitosan layers. Langmuir 8:1406–1412

    Google Scholar 

  • da Silva Perez D, Montanari S, Vignon MR (2003) TEMPO-mediated oxidation of cellulose III. Biomacromolecules 4:1417–1425

    Article  Google Scholar 

  • de Mesquita JP, Donnici CL, Pereira FV (2010) Biobased nanocomposites from layer-by-layer assembly of cellulose nanowhiskers with chitosan. Biomacromolecules 11:473–480

    Article  Google Scholar 

  • de Mesquita JP, Donnici CL, Teixeira IF, Pereira FV (2012) Bio-based nanocomposites obtained through covalent linkage between chitosan and cellulose nanocrystals. Carbohydr Polym 90:210–217

    Article  Google Scholar 

  • de Souza Lima MM, Borsali R (2004) Rodlike cellulose microcrystals: structure, properties, and applications. Macromol Rapid Commun 25:771–787

    Article  Google Scholar 

  • Dhar N, Akhlaghi SP, Tam KC (2012) Biodegradable and biocompatible polyampholyte microgels derived from chitosan, carboxymethyl cellulose and modified methyl cellulose. Carbohydr Polym 87:101–109

    Article  CAS  Google Scholar 

  • Dong XM, Kimura T, Revol JF, Gray DG (1996) Effects of ionic strength on the isotropic-chiral nematic phase transition of suspensions of cellulose crystallites. Langmuir 12:2076–2082

    Article  CAS  Google Scholar 

  • Dunne M, Corrigan OI, Ramtoola Z (2000) Influence of particle size and dissolution conditions on the degradation properties of polylactide-co-glycolide particles. Biomaterials 21:1659–1668

    Article  CAS  Google Scholar 

  • Filpponen I (2009) The synthetic strategies for unique properties in cellulose nanocrystal materials. Dissertation, University of North Carolina

  • Follain N, Marais MF, Montanari S, Vignon MR (2010) Coupling onto surface carboxylated cellulose nanocrystals. Polymer 51:5332–5344

    Article  CAS  Google Scholar 

  • Freire E (2006) Isothermal titration calorimetry and drug design application note optimization of binding affinity. ©MicroCal, LLC, Application Note

  • George M, Abraham TE (2006) Polyionic hydrocolloids for the intestinal delivery of protein drugs: alginate and chitosan-a review. J Controlled Release 114:1–14

    Article  CAS  Google Scholar 

  • Gilles MA, Hudson AQ, Borders CL (1990) Stability of water-soluble carbodiimides in aqueous solution. Anal Biochem 184:244–248

    Article  CAS  Google Scholar 

  • Guo X, Chang RK, Hussain MA (2009) Ion-exchange resins as drug delivery carriers. J Pharm Sci 98:3886–3902

    Article  CAS  Google Scholar 

  • Habibi Y, Chanzy H, Vignon MR (2006) TEMPO-mediated surface oxidation of cellulose whiskers. Cellulose 13:679–687

    Article  CAS  Google Scholar 

  • Hasani M, Cranston ED, Westman G, Gray DG (2008) Cationic surface functionalization of cellulose nanocrystals. Soft Matter 4:2238–2244

    Google Scholar 

  • Jackson JK, Letchford K, Wasserman BZ, Ye L, Wadood YH, Burt HM (2011) The use of cellulose nanocrystal for the binding and controlled release of drugs. Int J Nanomedicine 6:321–330

    CAS  Google Scholar 

  • Johnson RK, Glasser WG, Zink-Sharp A (2011) Preparation and characterization of hydrophobic derivatives of TEMPO-oxidized nanocelluloses. Cellulose 18:1599–1609

    Article  CAS  Google Scholar 

  • Khutoryanskiy VV (2011) Advances in mucoadhesion and mucoadhesive polymers. Macromol Biosci 11:748–764

    Article  CAS  Google Scholar 

  • Kwon S, Park JH, Chung H, Kwon IC, Jeong SY, Kim IS (2003) Physicochemical characteristics of self-assembled nanoparticles based on glycol chitosan bearing 5-cholanic acid. Langmuir 19:10188–10193

    Article  CAS  Google Scholar 

  • Lahiji RR, Xu X, Reifenberger R, Raman A, Rudie A, Moon RJ (2010) Atomic force microscopy characterization of cellulose nanocrystals. Langmuir 26:4480–4488

    Article  CAS  Google Scholar 

  • Lasseuguette E (2008) Grafting onto microfibrils of native cellulose. Cellulose 15:571–580

    Article  CAS  Google Scholar 

  • LaVan DA, McGuire T, Langer R (2003) Small-scale systems for in vivo drug delivery. Nat Biotechnol 21:1184–1191

    Article  CAS  Google Scholar 

  • Lina N, Huang J, Chang PR, Feng L, Yu J (2011) Effect of polysaccharide nanocrystals on structure, properties, and drug release kinetics of alginate-based microspheres. Colloids Surf B 852:70–79

    Google Scholar 

  • Liu PS, Chen Q, Liu X, Yuan B, Wu SS, Shen J, Lin SC (2009) Grafting of zwitterion from cellulose membranes via ATRP for improving blood compatibility. Biomacromolecules 10:2809–2816

    Article  CAS  Google Scholar 

  • Montanari S, Roumani M, Heux L, Vignon MR (2005) Topochemistry of carboxylated cellulose nanocrystals resulting from TEMPO-mediated oxidation. Macromolecules 38:1665–1671

    Article  CAS  Google Scholar 

  • Nakajima N, Ikada Y (1995) Mechanism of amide formation by carbodiimide for bioconjugation in aqueous media. Bioconjug Chem 6:123–130

    Article  CAS  Google Scholar 

  • Ohyama T, Cowan JA (1996) An approach to the evaluation of RNA solution structure and metal coordination chemistry by titration calorimetry. J Biol Inorg Chem 1:83–89

    Article  CAS  Google Scholar 

  • Pieper JS, Hafmans T, Veerkamp JH, van Kuppevelt TH (2000) Development of tailor-made collagen-glycosaminoglycan matrices: EDC/NHS crosslinking, and ultrastructural aspects. Biomaterials 21:581–593

    Article  CAS  Google Scholar 

  • Qiu LY, Bae YH (2006) Polymer architecture and drug delivery. Pharm Res 23:1–30

    Article  CAS  Google Scholar 

  • Ranby G (1951) Fibrous macromolecular systems. Cellulose and muscle. The colloidal properties of cellulose micelles. Discuss Faraday Soc 11:158–164

    Article  Google Scholar 

  • Rangel-Mendez JR, Escobar-Barrios VA, Davila-Rodriguez JL (2001) Chitin based biocomposites for removal of contaminants from water : a case study of fluoride adsorption. Biopolymers 8:163–180

    Google Scholar 

  • Rossi S, Marciello M, Bonferoni MC, Ferrari F, Sandri G, Dacarro C, Grisoli P, Caramella C (2010) Thermally sensitive gels based on chitosan derivatives for the treatment of oral mucositis. Eur J Pharm Biopharm 74:248–254

    Article  CAS  Google Scholar 

  • Saito T, Isogai A (2004) TEMPO-mediated oxidation of native cellulose. The effect of oxidation conditions on chemical and crystal structures of the water-insoluble fractions. Biomacromolecules 5:1983–1989

    Article  CAS  Google Scholar 

  • Sam S, Touahir L, Salvador-Andresa J, Allolgue P, Chazalviel JN, Gouget-Laemmel AC, Henry de Villeneuve C, Moraillon A, Ozanam F, Gabouze N, Djebbar S (2010) Semiquantitative study of the EDC/NHS activation of acid terminal groups at modified porous silicon surfaces. Langmuir 2680:9–14

    Google Scholar 

  • Sonia TA, Sharma CP (2011) Chitosan and its derivatives for drug delivery perspective. Adv Polym Sci 243:23–54

    Article  CAS  Google Scholar 

  • Tan JPK, Tam KC (2007) Application of drug selective electrode in the drug release study of pH-responsive microgels. J Controlled Release 118:87–94

    Article  CAS  Google Scholar 

  • Wang H, Roman M (2011) Formation and properties of chitosan-cellulose nanocrystal polyelectrolyte-macroion complexes for drug delivery applications. Biomacromolecules 12:1585–1593

    Article  CAS  Google Scholar 

  • Yi J, Xu Q, Zhang X, Zhang H (2008) Chiral-nematic self-ordering of rodlike cellulose nanocrystals grafted with poly(styrene) in both thermotropic and lyotropic states. Polymer 49:4406–4412

    Google Scholar 

  • Yi J, Xu Q, Zhang X, Zhang H (2009) Temperature-induced chiral nematic phase changes of suspensions of poly (N,N-dimethylaminoethyl methacrylate)-grafted cellulose nanocrystals. Cellulose 16:989–997

    Article  CAS  Google Scholar 

  • Zhao Q, Wang S, Cheng X, Yam RCM, Kong D, Li RKY (2010) Surface modification of cellulose fiber via supramolecular assembly of biodegradable polyesters by the aid of host-guest inclusion complexation. Biomacromolecules 11:1364–1369

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kam C. Tam.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Akhlaghi, S.P., Berry, R.C. & Tam, K.C. Surface modification of cellulose nanocrystal with chitosan oligosaccharide for drug delivery applications. Cellulose 20, 1747–1764 (2013). https://doi.org/10.1007/s10570-013-9954-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-013-9954-y

Keywords

Navigation