Skip to main content
Log in

Cellulose polymorphism study with sum-frequency-generation (SFG) vibration spectroscopy: identification of exocyclic CH2OH conformation and chain orientation

  • Original Research
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Sum-frequency-generation (SFG) vibration spectroscopy is a technique only sensitive to functional groups arranged without centrosymmetry. For crystalline cellulose, SFG can detect the C6H2 and intra-chain hydrogen-bonded OH groups in the crystal. The geometries of these groups are sensitive to the hydrogen bonding network that stabilizes each cellulose polymorph. Therefore, SFG can distinguish cellulose polymorphs (Iβ, II, IIII and IIIII) which have different conformations of the exocyclic hydroxymethylene group or directionalities of glucan chains. The C6H2 asymmetric stretching peaks at 2,944 cm−1 for cellulose Iβ and 2,960 cm−1 for cellulose II, IIII and IIIII corresponds to the trans-gauche (tg) and gauche-trans (gt) conformation, respectively. The SFG intensity of the stretch peak of intra-chain hydrogen-bonded O–H group implies that the chain arrangement in cellulose crystal is parallel in Iβ and IIII, and antiparallel in II and IIIII.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Adams GA, Bishop CT (1953) Polysaccharides associated with alpha-cellulose. Nature 172(4366):28–29

    Article  CAS  Google Scholar 

  • Atalla RH, Nagel SC (1974) Annealing and increased order in cellulose II. J Polym Sci, Part C: Polym Lett 12(10):565–568

    Article  CAS  Google Scholar 

  • Atalla RH, Vanderhart DL (1984) Native cellulose: a composite of two distinct crystalline forms. Science 223(4633):283–285

    Article  CAS  Google Scholar 

  • Atalla R, VanderHart D (1999) The role of solid state 13C NMR spectroscopy in studies of the nature of native celluloses. Solid State Nucl Magn Reson 15(1):1–19

    Article  CAS  Google Scholar 

  • Baley C (2002) Analysis of the flax fibres tensile behaviour and analysis of the tensile stiffness increase. Compos Part A 33(7):939–948

    Article  Google Scholar 

  • Barnette AL, Bradley LC, Veres BD, Schreiner EP, Park YB, Park J, Park S, Kim SH (2011) Selective detection of crystalline cellulose in plant cell walls with sum-frequency-generation (SFG) vibration spectroscopy. Biomacromolecules 12:2434–2439

    Article  CAS  Google Scholar 

  • Barnette AL, Lee C, Bradley LC, Schreiner EP, Park YB, Shin H, Cosgrove DJ, Park S, Kim SH (2012) Quantification of crystalline cellulose in lignocellulosic biomass using sum frequency generation (SFG) vibration spectroscopy and comparison with other analytical methods. Carbohydr Polym 89(3):802–809

    Article  CAS  Google Scholar 

  • Blackwell J (1977) Infrared and Raman spectroscopy of cellulose. Cellul Chem Technol 48:206–218

    Article  CAS  Google Scholar 

  • Cael J, Gardner K, Koenig J, Blackwell J (1975) Infrared and Raman spectroscopy of carbohydrates. Paper V. Normal coordinate analysis of cellulose I. J Chem Phys 62:1145

    Article  CAS  Google Scholar 

  • Chen EH, Hayes PL, Nguyen ST, Geiger FM (2010) Zinc interactions with glucosamine-functionalized fused silica/water interfaces. J Phys Chem C 114(45):19483–19488

    Article  CAS  Google Scholar 

  • Cosgrove DJ (2005) Growth of the plant cell wall. Nat Rev Mol Cell Biol 6(11):850–861

    Article  CAS  Google Scholar 

  • Cranston ED, Gray DG (2008) Birefringence in spin-coated films containing cellulose nanocrystals. Colloids Surf A 325(1):44–51

    Article  CAS  Google Scholar 

  • Davies LM, Harris PJ, Newman RH (2002) Molecular ordering of cellulose after extraction of polysaccharides from primary cell walls of Arabidopsis thaliana: a solid-state CP/MAS 13C NMR study. Carbohydr Res 337(7):587–593

    Article  CAS  Google Scholar 

  • Denev SA, Lummen TT, Barnes E, Kumar A, Gopalan V (2011) Probing ferroelectrics using optical second harmonic generation. J Am Ceram Soc 94(9):2699–2727

    Article  CAS  Google Scholar 

  • Ding SY, Himmel ME (2006) The maize primary cell wall microfibril: a new model derived from direct visualization. J Agric Food Chem 54(3):597–606

    Article  CAS  Google Scholar 

  • Du Q, Superfine R, Freysz E, Shen Y (1993) Vibrational spectroscopy of water at the vapor/water interface. Phys Rev Lett 70(15):2313–2316

    Article  CAS  Google Scholar 

  • Fernandes AN, Thomas LH, Altaner CM, Callow P, Forsyth VT, Apperley DC, Kennedy CJ, Jarvis MC (2011) Nanostructure of cellulose microfibrils in spruce wood. PNAS 108(47):E1195–E1203

    Article  Google Scholar 

  • Hieu HC, Tuan NA, Li H, Miyauchi Y, Mizutani G (2011) Sum frequency generation microscopy study of cellulose fibers. Appl Spectrosc 65(11):1254–1259

    Article  CAS  Google Scholar 

  • Hong SC, Zhang C, Shen Y (2003) Rubbing-induced polar ordering in nylon-11. Appl Phys Lett 82(18):3068–3070

    Article  CAS  Google Scholar 

  • Horii F, Hirai A, Kitamaru R (1983) Solid-state 13C NMR study of conformations of oligosaccharides and cellulose. Polym Bull 10(7):357–361

    Article  CAS  Google Scholar 

  • Ishikawa A, Okano T, Sugiyama J (1997) Fine structure and tensile properties of ramie fibres in the crystalline form of cellulose I, II, IIII and IVI. Polymer 38(2):463–468

    Article  CAS  Google Scholar 

  • Isogai A, Usuda M, Kato T, Uryu T, Atalla RH (1989) Solid-state CP/MAS 13C NMR study of cellulose polymorphs. Macromolecules 22(7):3168–3172

    Article  CAS  Google Scholar 

  • Jarvis M (2003) Cellulose stacks up. Nature 426(6967):611–612

    Article  CAS  Google Scholar 

  • Jeffries R (1964) The amorphous fraction of cellulose and its relation to moisture sorption. J Appl Polym Sci 8(3):1213–1220

    Article  CAS  Google Scholar 

  • Kim N-H, Imai T, Wada M, Sugiyama J (2005) Molecular directionality in cellulose polymorphs. Biomacromolecules 7(1):274–280

    Article  Google Scholar 

  • Koyama M, Helbert W, Imai T, Sugiyama J, Henrissat B (1997) Parallel-up structure evidences the molecular directionality during biosynthesis of bacterial cellulose. PNAS 94(17):9091

    Article  CAS  Google Scholar 

  • Kroon-Batenburg L, Bouma B, Kroon J (1996) Stability of cellulose structures studied by MD simulations. Could mercerized cellulose II be parallel? Macromolecules 29(17):5695–5699

    Article  CAS  Google Scholar 

  • Kuga S, Takagi S, Brown RM (1993) Native folded-chain cellulose II. Polymer 34(15):3293–3297

    Article  CAS  Google Scholar 

  • LaComb R, Nadiarnykh O, Townsend SS, Campagnola PJ (2008) Phase matching considerations in second harmonic generation from tissues: effects on emission directionality, conversion efficiency and observed morphology. Opt Commun 281(7):1823–1832

    Article  CAS  Google Scholar 

  • Langan P, Nishiyama Y, Chanzy H (2001) X-ray structure of mercerized cellulose II at 1 Å resolution. Biomacromolecules 2(2):410–416

    Article  CAS  Google Scholar 

  • Liang C, Marchessault R (1959) Hydrogen bonds in native celluloses. J Polym Sci 35(129):529–531

    Article  Google Scholar 

  • Marechal Y, Chanzy H (2000) The hydrogen bond network in Iβ cellulose as observed by infrared spectrometry. J Mol Struct 523(1):183–196

    Article  CAS  Google Scholar 

  • Marubashi Y, Higashi T, Hirakawa S, Tani S, Erata T, Takai M, Kawamata J (2004) Second harmonic generation measurements for biomacromolecules: celluloses. Opt Rev 11(6):385–387

    Article  CAS  Google Scholar 

  • Mittal A, Katahira R, Himmel ME, Johnson DK (2011) Effects of alkaline or liquid-ammonia treatment on crystalline cellulose: changes in crystalline structure and effects on enzymatic digestibility. Biotechnol Biofuels 4(1):1–16

    Article  Google Scholar 

  • Nadiarnykh O, LaComb RB, Campagnola PJ, Mohler WA (2007) Coherent and incoherent SHG in fibrillar cellulose matrices. Opt Express 15(6):3348–3360

    Article  Google Scholar 

  • Newman RH, Davidson TC (2004) Molecular conformations at the cellulose–water interface. Cellulose 11(1):23–32

    Article  CAS  Google Scholar 

  • Nishiyama Y, Langan P, Chanzy H (2002) Crystal structure and hydrogen-bonding system in cellulose Iβ from synchrotron X-ray and neutron fiber diffraction. J Am Chem Soc 124(31):9074–9082

    Article  CAS  Google Scholar 

  • Park S, Baker JO, Himmel ME, Parilla PA, Johnson DK (2010) Cellulose crystallinity index: measurement techniques and their impact on interpreting cellulase performance. Biotechnol Biofuels 3:1–10

    Article  Google Scholar 

  • Rocha-Mendoza I, Yankelevich DR, Wang M, Reiser KM, Frank CW, Knoesen A (2007) Sum frequency vibrational spectroscopy: the molecular origins of the optical second-order nonlinearity of collagen. Biophys J 93(12):4433–4444

    Article  CAS  Google Scholar 

  • Sarkar P, Bosneaga E, Auer M (2009) Plant cell walls throughout evolution: towards a molecular understanding of their design principles. J Exp Bot 60(13):3615–3635

    Article  CAS  Google Scholar 

  • Shen Y (1989) Surface properties probed by second-harmonic and sum-frequency generation. Nature 337:519–525

    Article  CAS  Google Scholar 

  • Sisson WA (1938) The existence of mercerized cellulose and its orientation in Halicystis as indicated by X-ray diffraction analysis. Science 87:350

    Article  CAS  Google Scholar 

  • Šturcová A, His I, Wess TJ, Cameron G, Jarvis MC (2003) Polarized vibrational spectroscopy of fiber polymers: hydrogen bonding in cellulose II. Biomacromolecules 4(6):1589–1595

    Article  Google Scholar 

  • Šturcová A, His I, Apperley DC, Sugiyama J, Jarvis MC (2004) Structural details of crystalline cellulose from higher plants. Biomacromolecules 5(4):1333–1339

    Article  Google Scholar 

  • Wada M, Heux L, Isogai A, Nishiyama Y, Chanzy H, Sugiyama J (2001) Improved structural data of cellulose IIII prepared in supercritical ammonia. Macromolecules 34(5):1237–1243

    Article  CAS  Google Scholar 

  • Wada M, Chanzy H, Nishiyama Y, Langan P (2004) Cellulose IIII crystal structure and hydrogen bonding by synchrotron X-ray and neutron fiber diffraction. Macromolecules 37(23):8548–8555

    Article  CAS  Google Scholar 

  • Wada M, Heux L, Nishiyama Y, Langan P (2009) X-ray crystallographic, scanning microprobe X-ray diffraction, and cross-polarized/magic angle spinning 13C NMR studies of the structure of cellulose IIIII. Biomacromolecules 10(2):302–309

    Article  CAS  Google Scholar 

  • Wampler RD, Kissick DJ, Dehen CJ, Gualtieri EJ, Grey JL, Wang H-F, Thompson DH, Cheng J-X, Simpson GJ (2008) Selective detection of protein crystals by second harmonic microscopy. JACS 130(43):14076–14077

    Article  CAS  Google Scholar 

  • Weeraman C, Yatawara AK, Bordenyuk AN, Benderskii AV (2006) Effect of nanoscale geometry on molecular conformation: vibrational sum-frequency generation of alkanethiols on gold nanoparticles. J Am Chem Soc 128(44):14244–14245

    Article  CAS  Google Scholar 

  • Wiley JH, Atalla RH (1987) Band assignments in the Raman spectra of celluloses. Carbohydr Res 160:113–129

    Article  CAS  Google Scholar 

  • Yatawara AK, Tiruchinapally G, Bordenyuk AN, Andreana PR, Benderskii AV (2009) Carbohydrate surface attachment characterized by sum frequency generation spectroscopy. Langmuir 25(4):1901–1904

    Article  CAS  Google Scholar 

  • Zugenmaier P (2008) Crystalline cellulose and derivatives: characterization and structures. In: Timell TE, Wimmer R (eds) Springer series in wood science. Springer, Berlin, pp 112–161

    Google Scholar 

Download references

Acknowledgments

This work was supported by Subcontract No. XGB-1-11444-01 with the National Renewable Energy Laboratory, under Contract No. DE-AC36-08-GO28308 with the US Department of Energy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seong H. Kim.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 497 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, C.M., Mittal, A., Barnette, A.L. et al. Cellulose polymorphism study with sum-frequency-generation (SFG) vibration spectroscopy: identification of exocyclic CH2OH conformation and chain orientation. Cellulose 20, 991–1000 (2013). https://doi.org/10.1007/s10570-013-9917-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-013-9917-3

Keywords

Navigation