Skip to main content

Advertisement

Log in

Development of antimicrobial cotton fabric using bionanocomposites

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

In order to provide antimicrobial activity to cotton, cotton fabrics were treated by montmorillonite (KSF), montmorillonite–dihydroxy ethylene urea (KSF–MDEU), KSF–chitosan (CS) and KSF–CS–MDEU solutions containing 12.5, 25 and 50 ppm silver ion. The effect of modification on the antibacterial activity of cotton fabrics was also evaluated after 10 cycles of washings. MDEU exhibited better antimicrobial activities after washing process. By using 25 ppm silver, KSF and CS modification solution, good performance in terms of antibacterial activity was obtained. The addition of CS and MDEU increased the whiteness index values of cotton fabrics treated with KSF containing different silver concentrations. The characterization of modified cotton samples was done by Fourier transform infrared spectroscopy, X-ray diffraction analysis, inductively coupled plasma-mass spectroscopy, scanning electron microscopy and thermogravimetric analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • AATCC Technical Manual (1998) American Association of Textile Chemists and Colorists. vol. 73, Research Triangle Park, NC, pp. 186–188, 206–207, and 253–254

  • Ahmad MB, Shameli K, Darroudi M, Yunus WMZW, Ibrahim NA (2009) Synthesis and characterization of silver/clay nanocomposites by chemical reduction method. Am J Appl Sci 6(11):1909–1914. doi:10.3844/ajassp.2009 1909.1914

    Article  Google Scholar 

  • Altinisik A, Yurdakoc K (2011) Synthesis, characterization, and enzymatic degradation of chitosan/PEG hydrogel films. J Appl Polym Sci 3(122):1556–1563. doi:10.1002/app.34278

    Article  Google Scholar 

  • Altinisik A, Seki Y, Yurdakoc K (2009) Preparation and characterization of chitosan/KSF biocomposite film. Polym Compos 30(8):1035–1042. doi:10.1002/pc.20651

    Article  CAS  Google Scholar 

  • An J, Luo Q, Yuan X, Wang D, Li X (2011) Preparation and characterization of silver-chitosan nanocomposite particles with antimicrobial activity. J Appl Polym Sci 120(6):3180–3189. doi:10.1002/app.33532

    Article  CAS  Google Scholar 

  • Aranaz I, Mengíbar M, Harris R, Panos I, Miralles B, Acosta NG, Heras A (2009) Functional characterization of chitin and chitosan. Curr Chem Biol 3(2):203–230. doi:10.2174/187231309788166415

    CAS  Google Scholar 

  • Bakar MA, Ismail J, Teoh CH, Tan WL, Bakar NHHA (2008) Modified natural rubber induced aqueous to toluene phase transfer of gold and platinum colloid. J Nanomater 6:1–8. doi:10.1155/2008/130295

    Article  Google Scholar 

  • Bordes P, Pollet E, Bourbigot S, Ave’rous L (2008) Structure and properties of PHA/clay nanobiocomposites prepared by melt intercalation. Macromol Chem Phys 209:1473–1484. doi:10.1002/macp.200800022

    Article  CAS  Google Scholar 

  • Carja G, Kameshima Y, Nakajima A, Dranca C, Okada K (2000) Nanosized silver-anionic clay matrix as nanostructured ensembles with antimicrobial activity. Int J Antimicrob Ag 2:56–64. doi:10.1016/j.ijantimicag.2009.08.008

    Google Scholar 

  • Carja G, Kameshima Y, Nakajima A, Dranca C, Okada K (2009) Nanosized silver-anionic clay matrix as nanostructured ensembles with antimicrobial activity. Int J Antimicrob Ag 34(6):534–539. doi:10.1016/j.ijantimicag.2009.08.008

    Article  CAS  Google Scholar 

  • Cho J, Cho G (1997) Effect of a dual function finish containing an antibiotic and a fluorochemical on the antimicrobial properties and blood repellency of surgical gown materials. Text Res J 67:875–880. doi:10.1177/004051759706701203

    CAS  Google Scholar 

  • Darder M, Colilla M, Ruiz-Hitzky E (2003) Biopolymer–clay nanocomposites based on chitosan intercalated in montmorillonite. Chem Mater 15(20):3774–3780. doi:10.1021%2fcm0343047

    Article  CAS  Google Scholar 

  • Dastjerdi R, Montazer M (2010) A review on the application of inorganic nano-structured materials in the modification of textiles: focus on anti-microbial properties. Colloid Surface B 79(1):5–18. doi:10.1016/j.colsurfb.2010.03.029

    Article  CAS  Google Scholar 

  • Dolgaev SI, Simakin AV, Voronov VV, Shafeev GA, Bozon-Verduraz F (2002) Nanoparticles produced by laser ablation of solids in liquid environment. Appl Surf Sci 186:546–551. doi:10.1016/S0169-4332(01)00634-1

    Article  CAS  Google Scholar 

  • Duarte ML, Ferreira MC, Marvao MR, Rocha J (2002) An optimised method to determine the degree of acetylation of chitin and chitosan by FTIR spectroscopy. Int J Biol Macromol 31(1–3):1–8. doi:10.1016/S0141-8130(02)00039-9

    Article  CAS  Google Scholar 

  • Dutta PK, Tripathi S, Mehrotra GK, Dutta J (2009) Perspectives for chitosan based antimicrobial films in food applications. Food Chem 114(4):1173–1182. doi:10.1016/j.colsurfa.2012.12.029

    Article  CAS  Google Scholar 

  • Forough M, Farhadi K (2010) Biological and green synthesis of silver nanoparticles. Turk J Eng Environ Sci 34:281–287. doi:10.3906/muh-1005-30

    CAS  Google Scholar 

  • Gao Y, Cranston R (2008) Recent advances in antimicrobial treatments of textiles. Text Res J 78:60–72. doi:10.1177/0040517507082332

    Article  CAS  Google Scholar 

  • Gao Y, Yunzhao Y (2002) Deposition of silver nanoparticles on montmorillonite platelets by chemical plating. J Mater Sci 37:5083–5087. doi:10.1023/A:1021099918952

    Article  CAS  Google Scholar 

  • Gopakumar TG, Lee JA, Kontopoulou MJS (2002) Influence of clay exfoliation on the physical properties of montmorillonite/polyethylene composites. Parent Polym 43(20):5483–5490. doi:10.1016/S0032-3861(02)00403-2

    Article  CAS  Google Scholar 

  • Guo L, Yuan W, Lu Z, Li CM (2013) Polymer/nanosilver composite coatings for antibacterial applications. Colloid Surf A. doi:10.1016/j.colsurfa.2012.12.029

    Google Scholar 

  • Gupta P, Bajpai MSK (2008) Investigation of antibacterial properties of silver nanoparticle-loaded poly (acrylamide-co-itaconic acid)-grafted cotton fabric. J Cotton Sci 12:280–286

    CAS  Google Scholar 

  • Hema R, Ng PN, Amirul AA (2013) Green nanobiocomposite: reinforcement effect of montmorillonite clays on physical and biological advancement of various polyhydroxyalkanoates. Polym Bull 70:755–771. doi:10.1007/s00289-012-0822-y

    Article  CAS  Google Scholar 

  • Ingraham J, Ingraham C (1995) Introduction to Microbiology. Wadsworth, Belmont, pp 220–223

    Google Scholar 

  • Kang HY, Jung MJ, Jeong YK (2000) Antimicrobial activity and the stability of an Ag+ solution made using metallic silver. Korean J Biotechnol Bioeng 15:521–524

    Google Scholar 

  • Ki HY, Kim JH, Kwon SC, Jeong SH (2007) A study on multifunctional wool textiles treated with nano-sized silver. J Mater Sci 42:8020–8024. doi:10.1007/s10853-007-1572-3

    Article  CAS  Google Scholar 

  • Kim TH, Kim ParkHS, Shin US, Gong MS, Kim HW (2012) Size-dependent cellular toxicity of silver nanoparticles. J Biomed Mater Res A 100(4):1033–1043. doi:10.1016/j.colsurfa.2012.12.029

    Google Scholar 

  • Kimiran Erdem A, Sanli Yurudu NO (2008) The evaluation of antibacterial activity of fabrics impregnated with dimethyltetradecyl (3-(trimethoxysilyl) propyl) ammonium chloride. IUFS J Biol 67(2):115–122

    Google Scholar 

  • Kreibig U, Vollmer M,(1995) Optical properties of metal clusters. Springer series in material science. 25, Springer, Berlin; pp 26–76. ISBN: 978-3-540-57836-9

  • Lewin M, Sello SB (1984) Handbook of fiber science and technology: chemical processing of fibers and fabrics, functional finishes, vol. II, Part B, Marcel Decker, NY, pp 144–210 ISBN: 0824771184, 9780824771188

  • Link S, El-Sayed MA (2003) Optical properties and ultrafast dynamics of metallic nanocrystals. Annu Rev Phys Chem 54:331–366. doi:10.1146/annurev.physchem.54.011002.103759

    Article  CAS  Google Scholar 

  • Montazera M, Alimohammadi F, Shamei A, Rahimi MK (2012) Durable antibacterial and cross-linking cotton with colloidal silver nanoparticles and butane tetracarboxylic acid without yellowing. Colloid Surface B 89:196–202. doi:10.1016/j.colsurfb.2011.09.015

    Article  Google Scholar 

  • Nath SS, Chakdar D, Gope G (2007) Synthesis of CdS and ZnS quantum dots and their applications in electronics. Nanotrends 2:1–5

    Google Scholar 

  • Nath SS, Chakdar D, Gope G, Avasthi DK (2008) Effect of 100 Mev nickel ions on silica coated ZnS quantum dot. J Nanoelectron Opt 3(2):180–183. doi:10.1166/jno.2008.212

    Article  Google Scholar 

  • Noginov MA, Zhu G, Bahoura M, Adegoke J, Small C, Ritzo BA, Drachev VP, Shalaev VM (2007) The effect of gain and absorption on surface plasmas in metal nanoparticles. Appl Phys B 86(3):455–460. doi:10.1007/s00340-006-2401-0

    Article  CAS  Google Scholar 

  • Olderman J (1997) Surgical nonwovens: where do we go from here. Nonwoven Ind 10:38–43

    Google Scholar 

  • Padalkar S, Capadona JR, Rowan J, Weder C, Won Y-H, Stanciu LA, Moon RJ (2010) Natural biopolymers: novel templates for the synthesis of nanostructures. Langmuir 26(11):8497–8502. doi:10.1021/la904439p

    Article  CAS  Google Scholar 

  • Panacek A, Kvitek L, Prucek R, Kolar M, Vecerova R, Pizurova N, Sharma VK, Nevecna T (2006) Silver colloid nanoparticles: synthesis, characterization, and their antibacterial activity. J Phys Chem B 110:16248–16253. doi:10.1021/jp063826h

    Article  CAS  Google Scholar 

  • Pavlidou S, Papaspyrides CD (2008) A review on polymer-layered silicate nanocomposites. Prog Polym Sci 33:1119–1198. doi:10.1016/j.progpolymsci.2008.07.008

    Article  CAS  Google Scholar 

  • Potiyaraj P, Kumlangdudsana P, Dubas ST (2007) Synthesis of silver chloride nanocrystal on silk fibers. Mater Lett 61:2464–2466. doi:10.1016/j.matlet.2006.09.039

    Article  CAS  Google Scholar 

  • Raveendran P, Fu J, Wallen SL (2003) Completely “Green” synthesis and stabilization of metal nanoparticles”. J Am Chem Soc 125(46):13940–13941. doi:10.1021/ja029267j

    Article  CAS  Google Scholar 

  • Rhim JW, Hong SI, Park HM, Ng PKW (2006) Preparation and characterization of chitosan-based nanocomposite films with antimicrobial activity. J Agric Food Chem 54:5814–5822. doi:10.1021/jf060658h

    Article  CAS  Google Scholar 

  • Seki Y, Sarikanat M, Sever K, Durmuşkahya C (2012) Extraction and properties of Ferula communis (chakshir) fibers as novel reinforcement for composites materials. Compos Part B Eng 44(1):517–523. doi:10.1016/j.compositesb.2012.03.013

    Article  Google Scholar 

  • Shameli K, Ahmad MB, Yunus WMZW, Rustaiyan A, Ibrahim NA, Zargar M, Abdollahi Y (2010) Green synthesis of silver/montmorillonite/chitosan bionanocomposites using the UV irradiation method and evaluation of antibacterial activity. Int J Nanomed 5:875–887. doi:10.2147/IJN.S13632

    Article  CAS  Google Scholar 

  • Shameli K, Ahmad MB, Zargar M, Yunus WMZW, Ibrahim NA, Shabanzadeh P, Moghaddam MG (2011) Synthesis and characterization of silver/montmorillonite/chitosan bionanocomposites by chemical reduction method and their antibacterial activity. Int J Nanomed 6:271–284. doi:10.2147%2FIJN.S16043

    Article  CAS  Google Scholar 

  • Taleb A, Petit C, Pileni MP (1998) Optical properties of self assembled 2D and 3D superlattices of silver nanoparticles. J Phys Chem B 102:2214–2220. doi:10.1021/jp972807s

    Article  CAS  Google Scholar 

  • Treguer M, Rocco F, Lelong G, Nestour AL, Cardinal T, Maali A, Lounis B (2005) Flourescence silver oligomeric cluster and colloidal particles. Solid State Sci 7:812–818. doi:10.1016/j.solidstatesciences.2005.01.017

    Article  CAS  Google Scholar 

  • Tripathi S, Mehrotra GK, Dutta PK (2011) Chitosan–silver oxide nanocomposite film: preparation and antimicrobial activity. Bull Mater Sci 34(1):29–35. doi:10.1007/s12034-011-0032-5

    Article  CAS  Google Scholar 

  • Turker M (2004) Effect of production parameters on the structure and morphology of Ag nanopowders produced by inert gas condensation. Mater Sci Eng A 367:74–81. doi:10.1016/j.msea.2003.10.290

    Article  Google Scholar 

  • Wang S, Hou W, Wei L, Jia H, Liu X, Xu B (2007) Antibacterial activity of nano-SiO2 antibacterial agent grafted on wool surface. Surf Coat Tech 202:460–465. doi:10.1016/j.surfcoat.2007.06.012

    Article  CAS  Google Scholar 

  • Wasif AI, Laga SK (2009) Use of nano silver as an antimicrobial agent for cotton. AUTEX Res J 9(1):5–13

    Google Scholar 

  • Webber D, Rutul W (2001) Use of metals as microbicides. In: Block S (ed) Preventing infections in healthcare. Disinfection, sterilization and preservation, 5th edn. Lippincott, Willams & Wilkins, New York, pp 415–430. ISBN: 0-683-30740-I

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aylin Altınışık.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Altınışık, A., Bozacı, E., Akar, E. et al. Development of antimicrobial cotton fabric using bionanocomposites. Cellulose 20, 3111–3121 (2013). https://doi.org/10.1007/s10570-013-0057-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-013-0057-6

Keywords

Navigation