Skip to main content

Advertisement

Log in

Aligned electrospun cellulose fibers reinforced epoxy resin composite films with high visible light transmittance

  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Uniaxially oriented cellulose nanofibers were fabricated by electrospinning on a rotating cylinder collector. The fiber angular standard deviation (a parameter of fiber orientation) of the mats was varied from 65.6 to 26.2o by adjusting the rotational speed of the collector. Optically transparent epoxy resin composite films reinforced with the electrospun cellulose nanofibrous mats were then prepared by the solution impregnation method. The fiber content in the composite films was in the range of 5–30 wt%. Scanning electron microscopy studies showed that epoxy resin infiltrated and completely filled the pores in the mats. Indistinct epoxy/fiber interfaces, epoxy beads adhering on the fiber surfaces, and torn fiber remnants were found on the fractured composite film surfaces, indicating that the epoxy resin and cellulose fibers formed good interfacial adherence through hydrogen-bonding interaction. In the visible light range, the light transmittance was 88–92% for composite films with fiber loadings of 16–32 wt%. Compared to the composite films reinforced with 20 wt% randomly oriented fibers, the mechanical strength and Young’s modulus of the composite films reinforced with same amount of aligned fibers increased by 71 and 61%, respectively. Dynamical mechanical analysis showed that the storage moduli of the composite films were greatly reinforced in the temperature above the glass transition temperature of the epoxy resin matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Agarwal BD, Broutman LJ (1980) Analysis and performance of fiber composites. Wiley, New York, pp 54–120

    Google Scholar 

  • Azizi Samir MAS, Alloin F, Dufresne A (2005) Review of recent research into cellulosic whiskers, their properties and their application in nanocomposite field. Biomacromolecules 6:612–626

    Article  Google Scholar 

  • Bashur CA, Dahlgren LA, Goldstein AS (2006) Effect of fiber diameter and orientation on fibroblast morphology and proliferation on electrospun poly (D, L-lactic-co-glycolic acid) meshes. Biomaterials 27(33):5681–5688

    Article  CAS  Google Scholar 

  • Berglund LA, Peijs T (2010) Cellulose biocomposites-from bulk moldings to nanostructured systems. MRS Bull 35(3):201–207

    Article  CAS  Google Scholar 

  • Chen GFS, Liu HQ (2008) Electrospun cellulose nanofiber reinforced soybean protein isolate composite film. J Appl Polym Sci 110(2):641–646

    Article  CAS  Google Scholar 

  • Favier V, Chanzy H, Cavaille JY (1995) Polymer nanocomposites reinforced by cellulose whiskers. Macromolecules 28(18):6365–6367

    Article  CAS  Google Scholar 

  • Greiner A, Wendorff JH (2007) Electrospinning: a fascinating method for the preparation of ultrathin fibers. Angew Chem-Int Edit 46:5670–5703

    Article  CAS  Google Scholar 

  • Habibi Y, Lucia LA, Rojas OJ (2010) Cellulose nanocrystals: chemistry, self-assembly, and applications. Chem Rev 110(6):3479–3500

    Article  CAS  Google Scholar 

  • Huang ZM, Zhang YZ, Kotaki M, Ramakrishna S (2003) A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Compos Sci Technol 63(15):2223–2253

    Article  CAS  Google Scholar 

  • Ifuku S, Morooka S, Morimoto M, Saimoto H (2010) Acetylation of chitin nanofibers and their transparent nanocomposite films. Biomacromolecules 11(5):1326–1330

    Article  CAS  Google Scholar 

  • Jonoobi M, Harun J, Mathew AP, Oksman K (2010) Mechanical properties of cellulose nanofiber (CNF) reinforced polylactic acid (PLA) prepared by twin screw extrusion. Compos Sci Technol 70(12):1742–1747

    Article  CAS  Google Scholar 

  • Leitner J, Hinterstoisser B, Wastyn M, Keckes J, Gindl W (2007) Sugar beet cellulose nanofibril-reinforced composites. Cellulose 14(5):419–425

    Article  CAS  Google Scholar 

  • Li D, Xia YN (2004) Electrospinning of nanofibers: reinventing the wheel? Adv Mater 16(14):1151–1170

    Article  CAS  Google Scholar 

  • Liu HQ, Hsieh YL (2002) Ultrafine fibrous cellulose membranes from electrospinning of cellulose acetate. J Polym Sci Pt B-Polym Phys 40(18):2119–2129

    Article  CAS  Google Scholar 

  • Mark JE (ed) (2007) Physical properties of polymers handbook, 2nd edn. Springer, New York

    Google Scholar 

  • Mikkonen KS, Mathew AP, Pirkkalainen K, Serimaa R, Xu CL, Willfor S, Oksman K, Tenkanen M (2010) Glucomannan composite films with cellulose nanowhiskers. Cellulose 17(1):69–81

    Article  CAS  Google Scholar 

  • Okahisa Y, Yoshida A, Miyaguchi S, Yano H (2009) Optically transparent wood-cellulose nanocomposite as a base substrate for flexible organic light-emitting diode displays. Compos Sci Technol 69(11–12):1958–1961

    Article  CAS  Google Scholar 

  • Qi HS, Cai J, Zhang LN, Kuga S (2009) Properties of films composed of cellulose nanowhiskers and a cellulose matrix regenerated from alkali/urea solution. Biomacromolecules 10:1597–1602

    Article  CAS  Google Scholar 

  • Reneker DH, Chun I (1996) Nanometre diameter fibres of polymer, produced by electrospinning. Nanotechnology 7(3):216–223

    Article  CAS  Google Scholar 

  • Rusli R, Shanmuganathan K, Rowan SJ, Weder C, Eichhorn SJ (2010) Stress-transfer in anisotropic and environmentally adaptive cellulose whisker nanocomposites. Biomacromolecules 11(3):762–768

    Article  CAS  Google Scholar 

  • Seavey KC, Ghosh I, Davis RM, Glasser WG (2001) Continuous cellulose fiber-reinforced cellulose ester composites I. Manufacturing options. Cellulose 8(2):149–159

    Article  CAS  Google Scholar 

  • Siqueira G, Bras J, Dufresne A (2009) Cellulose whiskers versus microfibrils: influence of the nature of the nanoparticle and its surface functionalization on the thermal and mechanical properties of nanocomposites. Biomacromolecules 10(2):425–432

    Article  CAS  Google Scholar 

  • Soliman S, Pagliari S, Rinaldi A, Forte G, Fiaccavento R, Pagliri F, Franzese O, Minieri PM, Nardo D, Licoccia S, Traversa E (2010) Multiscale three-dimensional scaffolds for soft tissue engineering via multimodal electrospinning. Acta Biomater 6(4):1227–1237

    Google Scholar 

  • Sun W, Cai Q, Li P, Deng X, Wei Y, Xu M, Yang X (2010) Post-draw PAN-PMMA nanofiber reinforced and toughened Bis-GMA dental restorative composite. Dental Mater 26(9):873–880

    Article  CAS  Google Scholar 

  • Tang CY, Liu HQ (2008) Cellulose nanofiber reinforced poly(vinyl alcohol) composite film with high visible light transmittance. Composites A 39(10):1638–1643

    Article  Google Scholar 

  • Tang LM, Weder C (2010) Cellulose whisker/epoxy resin nanocomposites. ACS Appl Mater Interfaces 2(4):1073–1080

    Article  CAS  Google Scholar 

  • Tang CY, Wu MY, Wu YQ, Liu HQ (2011) Effects of fiber surface chemistry and size on the structure and properties of poly(vinyl alcohol) composite Films reinforced with electrospun fibers. Composites A 42(9):1100–1109

    Article  Google Scholar 

  • Yano H, Sugiyama J, Nakagaito AN, Nogi M, Matsumura K, Hakita M, Handa K (2005) Optically transparent composites reinforced with networks of bacterial nanofibers. Adv Mater 17(2):153

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Natural Science Foundation of China (No. 50973019, 50843030), the National Basic Research Program of China (2010CB732203), the Natural Science Foundation of Fujian Province (2010J06017).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haiqing Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liao, H., Wu, Y., Wu, M. et al. Aligned electrospun cellulose fibers reinforced epoxy resin composite films with high visible light transmittance. Cellulose 19, 111–119 (2012). https://doi.org/10.1007/s10570-011-9604-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-011-9604-1

Keywords

Navigation