Skip to main content
Log in

Protonation behavior of 6-deoxy-6-(2-aminoethyl)amino cellulose: a potentiometric titration study

  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

The protonation behavior of 6-deoxy-6-(2-aminoethyl)amino cellulose as a novel soluble aminated derivate of cellulose was studied by means of the potentiometric titration technique. The resulting proton binding isotherms exhibit two equivalent steps, which can be described by the standard macroscopic two-pK model, in which the degree of protonation is averaged over all the amine groups. In addition, a microscopic proton binding model was applied, in which the protonation sites are distinguished and the protonation free energy is expanded into an intrinsic term and an electrostatic repulsion between the primary and secondary amine groups. The protonation behavior of 6-deoxy-6-(2-aminoethyl)amino cellulose was compared with a model compound (N-methylethylenediamine).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aksberg R, Ödberg L (1990) Adsorption of an anionic polyacrylamide on cellulosic fibers with pre-adsorbed cationic polyelectrolytes. Nord Pulp and Paper Res J 411990:168–171

    Article  Google Scholar 

  • Avci D, Nuri M, Dagusan L (2002) New cationic polyelectrolytes for flocculation processes of baker’s yeast waste water. Polym Bull 48(4–5):353–359

    Article  CAS  Google Scholar 

  • Baumann H, Keller B, Ruzicka E (1991) Partially cationized cellulose for non-thrombogenic membrane in the presence of heparin and endothelial-cell-surface-heparansulfate (ES-HS). J Membrane Sci 61:253–268

    Article  CAS  Google Scholar 

  • Berger J, Reist M, Mayer JM, Felt O, Peppas NA, Gurny R (2004) Structure and interactions in covalently and ionically crosslinked chitosan hydrogels for biomedical applications. Eur J Pharm Biopharm 57:19–34

    Article  CAS  Google Scholar 

  • Berlin P, Klemm D, Jung A, Liebegott H, Rieseler R, Tiller J (2003) Film-forming aminocellulose derivatives as enzyme-compatible support matrices for biosensor developments. Cellulose 10:343–367

    Article  CAS  Google Scholar 

  • Berscht PC, Nies B, Liebendorfer A, Kreuter J (1994) Incorporation of basic fibroblast growth factor into methylpyrrolidinone chitosan fleeces and determination of the in vitro release characteristics. Biomaterials 15:593–600

    Article  CAS  Google Scholar 

  • Borkovec M, Koper GJM (1994) Ising models of polyprotic acids and bases. J Phys Chem 98:6038–6045

    Article  CAS  Google Scholar 

  • Borkovec M, Jönsson B, Koper GJM (2001) Ionization processes and proton binding in polyprotic systems: small molecules, proteins, interfaces and polyelectrolytes. In: Matijević E (ed) Prog Coll Pol Sci 16:99–339

  • Borkovec M, Koper GJM, Piguet C (2006) Ion binding to polyelectrolytes. Curr Opin Colloid Interface Sci 11(5):280–289

    Article  CAS  Google Scholar 

  • Čakara D, Fras L, Bračič M, Stana Kleinschek K (2009) Protonation behaviour of cotton fabric with irreversibly adsorbed chitosan: a potentiometric titration study. Carbohyd Polym 78:36–40

    Article  CAS  Google Scholar 

  • Culler MD, Bitman J, Thompson MJ, Robbins WE, Dutky SR (1979) Mastitis: I. In vitro antimicrobial activity of alkyl amines against mastitic bacteria. J Dairy Sci 62:584–595

    Article  CAS  Google Scholar 

  • Czaja W, Krystynowicz A, Bielecki Sand Brown RM (2006) Microbial cellulose. The natural power to heal wounds. Biomaterials 27(2):145–151

    Article  CAS  Google Scholar 

  • Dobrynin AV, Rubinstein M (1999) Hydrophobic polyelectrolytes. Macromolecules 32(3):915–922

    Article  CAS  Google Scholar 

  • Dobrynin AV, Rubinstein M (2005) Theory of polyelectrolytes in solutions and at surfaces. Prog Poly Sci 30(11):1049–1118

    Article  CAS  Google Scholar 

  • Dumitriu S (2002) Polymeric biomaterials, 2nd edn (revised and expanded). Marcel Dekker, Inc., New York, pp 1–213

  • Gärdlund L, Norgren M, Wägberg L, Marklund A (2007) The use of polyelectrolyte complexes (PEC) as strength additives for different pulps used for production of fine paper. Nord Pulp Paper Res 22(2):210–216

    Article  Google Scholar 

  • Goyal S, Dhull SK, Kapoor KK (2005) Chemical and biological changes during composting of different organic wastes and assessment of composting maturity. Bioresour Technol 96:1584–1591

    Article  CAS  Google Scholar 

  • Hashem A, Shishtawy RME (2001) Preparation and characterization of cationized cellulose for the removal of anionic dyes. Adsorpt Sci Technol 19:197–210

    Article  CAS  Google Scholar 

  • Hattori K, Yoshida T, Nakashima H, Premanathan M, Aragaki R, Mimura T, Kaneko Y, Yamamo N, Uryu T (1998) Synthesis of sulfonated amino polysaccharides having anti-HIV and blood anticoagulant activities. Carbohyd Res 312:1–8

    Article  CAS  Google Scholar 

  • Hebeish A, Hashem M, EL-Hosamy M, Abass S (2006) Cationization of linen fabric: studying the process parameters. RJTA 10(1):73–88

    Google Scholar 

  • Hoenich N (2006) Cellulose for medical applications: past, present, and future. BioResources 1(2):270–280

    Google Scholar 

  • Holm C, Joanny JF, Kremer K, Netz RR, Reineker P, Seidel C, Vilgis TA, Winkler RG (2004) Polyelectrolyte theory. In: Polyelectrolytes with defined molecular architecture II, vol 166. Springer, Berlin, pp 67–111

  • Jung A, Berlin P (2005) New water-soluble and film-forming aminocellulose tosylates as enzyme support matrices with Cu2+-chelating properties. Cellulose 12:67–84

    Article  CAS  Google Scholar 

  • Kaputskii FN, Gert EV, Torgashov VI, Zubets OV (2005) Hydrogels for medical applications fabricated by oxidative-hydrolytic modification of cellulose. Fibre Chem 37:485–489

    Article  CAS  Google Scholar 

  • Katchalsky A, Mazur J, Spitnik P (1957) Section II: polybase properties of polyvinylamine. J Polym Sci 23(104):513–532

    Article  CAS  Google Scholar 

  • Koper GJM, van Genderen MHP, Elissen Roman C, Baars M, Meijer EW, Borkovec M (1997) Protonation mechanism of poly(propylene imine) dendrimers and some associated oligo amines. J Am Chem Soc 119(28):6512–6521

    Article  CAS  Google Scholar 

  • Koper GJM, van Duijvenbode RC, Stam D, Steuerle U, Borkovec A (2003) Synthesis and protonation behavior of comblike poly(ethyleneimine). Macromolecules 36(7):2500–2507

    Article  CAS  Google Scholar 

  • Li H, Du Y, Xu Y (2004) Adsorption and complexation of chitosan wet-end additives in papermaking systems. J Appl Polym Sci 91:2642–2648

    Article  CAS  Google Scholar 

  • Liesene J (2009) Synthesis of water-soluble cationic cellulose derivatives with tertiary amino groups. Cellulose 17:167–172

    Article  CAS  Google Scholar 

  • Lim SH, Hudson SM (2004) Synthesis and antimicrobial activity of a water-soluble chitosan derivative with a fiber-reactive group. Carbohyd Res 339(2):313–319

    Article  CAS  Google Scholar 

  • Manning GS (1981) Limiting laws and counterion condensation in polyelectrolyte solutions. 6. Theory of the titration curve. J Phys Chem US 85(7):870–877

    Article  CAS  Google Scholar 

  • Marcus RA (1954) Titration of polyelectrolytes at higher ionic strengths. J Phys Chem US 58(8):621–623

    Article  CAS  Google Scholar 

  • Mesquita JP, Donnici LC, Pereira FV (2010) Biobased nanocomposites from layer by-layer assembly of cellulose nanowhiskers with chitosan. Biomacromolecules 11:473–480

    Article  CAS  Google Scholar 

  • Montplaisir D, Daneault C, Chabot B (2008) Surface composition of grafted thermomechanical pulp through XPS measurements. BioResources 3(4):1118–1129

    Google Scholar 

  • Muzzarelli RAA (2009) Chitins and chitosan for the repair of wound skin, nerve, cartilage and bone. Carbohyd Polym 76:167–182

    Article  CAS  Google Scholar 

  • Muzzarelli RAA, Mattioli-Belmonte M, Tietz C, Biagini R, Ferioli G, Brunelli MA, Fini M, Giardino R, Ilari P, Biagini G (1994) Stimulatory effect on bone formation exerted by a modified chitosan. Biomaterials 15:1075–1081

    Article  CAS  Google Scholar 

  • Myllytie P, Salmi J, Laine J (2009) The influence of pH on the adsorption and interaction of chitosan with cellulose. BioResources 4(4):1647–1662

    CAS  Google Scholar 

  • Packham RF (2007) The laboratory evaluation of polyelectrolyte flocculants. Brit Polym J 4(4):305–315

    Article  Google Scholar 

  • Pecse A, Jordane AA, Carluci G, Cintio A (2005) Articles comprising caionic polysaccharides and acidic pH buffering means. US Patent Application Publication:0124799 A1

  • Ravi Kumar MNV (2000) A review of chitin and chitosan applications. React Funct Polym 46:1–27

    Article  Google Scholar 

  • Rodríguez R, Alvarez-Lorenzo C, Concheiro A (2003) A Cationic cellulose hydrogels: kinetics of the cross-linking process and characterization as pH-/ion-sensitive drug delivery systems. J Control Release 86(2–3):253–265

    Article  Google Scholar 

  • Smith RM, Martell AE (1989) Critical stability constants, vol 6. Plenum Press, New York

    Google Scholar 

  • Swerin A, Wägberg L (1994) Size exclusion chromatography for characterisation of cationic polyelectrolytes used in papermaking. Nordic Pulp Paper Res J 411994:18–26

    Article  Google Scholar 

  • Swerin A, Odberg L, Lindström T (1990) Deswelling of hardwood kraft pulp fibres by cationic polymers. Nordic Pulp Paper Res J 411990:188–196

    Article  Google Scholar 

  • Szakacs Z, Kraszni M, Noszal B (2004) Determination of microscopic acid–base parameters from NMR-pH titrations. Anal Bioanal Chem 378(6):1428–1448

    Article  CAS  Google Scholar 

  • Ulrich S, Laguecir A, Stoll S (2005) Titration of hydrophobic polyelectrolytes using Monte Carlo simulations. J Chem Phys 122(9):094911–094919

    Article  CAS  Google Scholar 

  • Van Duijvenbode RC, Rajanayagam A, Koper GJM, Borkovec M, Paulus W, Steuerle U, Haussling L (1999) Influence of the distance between ionizable groups on the protonation behavior of various hexaamines. Phys Chem Chem Phys 1(24):5649–5652

    Article  Google Scholar 

  • Wu M, Kuga S (2006) Cationization of cellulose fabrics by polyallyamine binding. J Appl Polym Sci 100:1668–1672

    Article  CAS  Google Scholar 

  • Yang S, Fu S, Li X, Zhore Y, Zhan H (2010) Preparation of salt-sensitive and antibacterial hydrogel based on quaternized cellulose. BioResources 5(2):1114–1125

    CAS  Google Scholar 

Download references

Acknowledgments

We thank Matej Bracic (Laboratory for Characterisation and processing of Polymers) for his skilful technical assistance. We thank the Eureka office (project E4952—Biopackaging) which provided financial support for this work. The authors also thank to Prof. Per Stenius for valuable discussions during the preparation of manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lidija Fras Zemljič.

Additional information

Lidija Fras Zemljič and Duško Čakara have equally contributed to the manuscript.

Lidija Fras Zemljič—Member of the European Polysaccharide Network of Excellence (EPNOE).

Appendix: Protonation equilibria for diprotic molecules

Appendix: Protonation equilibria for diprotic molecules

The macroscopic proton binding isotherms

For a diprotic molecule, the two deprotonation steps are:

$$ {\text{H}}_{2} {\text{A}}^{n} \rightleftarrows {\text{H}}^{ + } + {\text{HA}}^{n - 1} ;\quad K_{2} = {\frac{{\left[ {{\text{HA}}^{n - 1} } \right]a_{{{\text{H}}^{ + } }} }}{{\left[ {{\text{H}}_{2} {\text{A}}^{n} } \right]}}} $$
(4)
$$ {\text{HA}}^{n - 1} \rightleftarrows {\text{H}}^{ + } + {\text{A}}^{n - 2} ;\quad K_{1} = {\frac{{\left[ {{\text{A}}^{n - 2} } \right]a_{{{\text{H}}^{ + } }} }}{{\left[ {{\text{HA}}^{n - 1} } \right]}}} $$
(5)

where the K i denote the step-wise mixed dissociation constants. Please note that K i are indexed according to the protons bound to the protonated species, thus the protonation (not deprotonation) step. For a base n = +2, while for an acid n = 0. The cumulative deprotonation reactions and the respective cumulative constants are defined as

$$ {\text{H}}_{2} {\text{A}}^{n} \rightleftarrows 2{\text{H}}^{ + } + {\text{A}}^{n - 2} ;\quad \bar{K}_{2} = {\frac{{\left[ {{\text{A}}^{n - 2} } \right]a_{{{\text{H}}^{ + } }}^{2} }}{{\left[ {{\text{H}}_{2} {\text{A}}^{n} } \right]}}} $$
(6)
$$ {\text{HA}}^{n - 1} \rightleftarrows {\text{H}}^{ + } + {\text{A}}^{n - 2} ;\quad \bar{K}_{1} = {\frac{{\left[ {{\text{A}}^{n - 2} } \right]a_{{{\text{H}}^{ + } }} }}{{\left[ {{\text{HA}}^{n - 1} } \right]}}} $$
(7)

The macroscopic protonation state is determined by the number of protons bound to the molecule. The total concentration of the molecule, [H2A]0 is the sum of all the protonation species

$$ \left[ {{\text{H}}_{2} {\text{A}}} \right]_{0} = \left[ {{\text{A}}^{n - 2} } \right] + \left[ {{\text{HA}}^{n - 1} } \right] + \left[ {{\text{H}}_{2} {\text{A}}^{n} } \right] $$
(8)

At a given pH = −loga +H , and provided [H2A]0 is known, Eqs. 68 or alternatively 4, 5, and 8 form closed sets, which permits calculating the probabilities of the three protonation species P 0 = [An2]/[H2A]0, P 1 = [HAn1]/[H2A]0 and P 2 = [H2An]/[H2A]0 from the dissociation constants. The overall degree of protonation is obtained as

$$ \theta = \frac{1}{2}\left( {P_{1} + 2P_{2} } \right) = {\frac{{\left[ {{\text{HA}}^{n - 1} } \right] + 2\left[ {{\text{H}}_{2} {\text{A}}^{n} } \right]}}{{2\left[ {{\text{H}}_{2} {\text{A}}} \right]_{0} }}} $$
(9)

The discrete site binding model

Distinguishing the protonation sites leads to the microscopic protonation scheme for a diprotic molecule (Borkovec and Koper 1994; Borkovec et al. 2001; Szakacs et al. 2004) (Fig. 5)

Fig. 5
figure 5

Microscopic protonation scheme of a diprotic molecule

In this picture, the particular sites are indexed and a microscopic protonation state (microstate) is defined by a set of the state variables {s i }, where s i  = 0 for deprotonated and s i  = 1 for protonated. For a diprotic molecule, the index i can attain values of 1 or 2.

A microscopic dissociation constant (microconstant) \( \hat{K}_{k} \left\{ {s_{i} |k} \right\} \) can be attributed to each site k and microstate {sik}. For modelling purposes, particularly useful are the microconstants for the first protonation step denoted as \( \hat{K}_{k} \)

$$ \left\{ {s_{i} = 0;\;s_{k} = 1} \right\} \rightleftarrows {\text{H}}^{ + } + \, \left\{ {s_{i} = 0;\;s_{k} = 0} \right\}\quad \hat{K}_{k} = {\frac{{\left\{ {s_{i \ne k} = 0;\;s_{k} = 0} \right\}a_{{{\text{H}}^{ + } }} }}{{\left\{ {s_{i \ne k} = 0;\;s_{k} = 1} \right\}}}} $$
(10)

In this step, a proton is bound at the site k of the fully deprotonated molecule. The site binding model equivalent to the Ising model, is defined by expanding the protonation free energy of a microstate F({s i }) as (Borkovec and Koper 1994)

$$ {\frac{{F\left( {\left\{ {s_{i} } \right\}} \right)}}{kT\ln 10}} = \sum\limits_{i} {s_{i} \log \mathop {K_{i} }\limits^{ \wedge } } + \sum\limits_{i < j} {\varepsilon_{i,j} s_{i} s_{j} } + \cdots $$
(11)

where ε i,j is the electrostatic interaction parameter between the protonated sites i and j, and neglecting the higher-order terms. NB this notation is valid only if the protonated site has the charge number +1, thus in the case of bases. ε i,j is related to the free energy of the electrostatic repulsion as

$$ \varepsilon_{i,j} = {\frac{{E_{i,j} }}{kT\ln 10}} $$
(12)

For a diprotic molecule, Eq. 11 simplifies to

$$ {\frac{{F\left( {s_{1} ,s_{2} } \right)}}{kT\ln 10}} = s_{1} \log \hat{K}_{1} + s_{2} \log \hat{K}_{2} + \varepsilon s_{1} s_{2} $$
(13)

In this case, the two macroscopic cumulative constants defined in Eqs. 6 and 7 can be written as

$$ \bar{K}_{1}^{ - 1} = \hat{K}_{1}^{ - 1} + \hat{K}_{2}^{ - 1} $$
(14)
$$ \bar{K}_{2}^{ - 1} = \hat{K}_{1}^{ - 1} \hat{K}_{2}^{ - 1} 10^{ - \varepsilon } $$
(15)

For the purpose of the present work, the EDA functionality and the N-methylethylenediamine were modelled with the same \( \hat{K}_{i} \) value for both protonation sites, in which case the above two equations simplify to

$$ \bar{K}_{1}^{ - 1} = 2\hat{K}^{ - 1} $$
(16)
$$ \bar{K}_{2}^{ - 1} = \hat{K}^{ - 2} 10^{ - \varepsilon } $$
(17)

Thus, for a diprotic molecule, one can calculate the macroscopic degree of protonation from the microscopic protonation constant \( \hat{K} \) and the electrostatic interaction parameter ε by combining Eqs. 68 and 16, 17. A full derivation of the above relations and a comprehensive description of the above model for the present, as well as much more complex cases of polyelectrolytes and surfaces can be found in the afore mentioned papers.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zemljič, L.F., Čakara, D., Michaelis, N. et al. Protonation behavior of 6-deoxy-6-(2-aminoethyl)amino cellulose: a potentiometric titration study. Cellulose 18, 33–43 (2011). https://doi.org/10.1007/s10570-010-9467-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-010-9467-x

Keywords

Navigation