Skip to main content
Log in

Turning polysaccharides into hydrophobic materials: a critical review. Part 1. Cellulose

  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

This survey constitutes the first part of a comprehensive review, whose purpose is to provide a reasoned perspective in the field related to the preparation of new polysaccharide-based hydrophobic materials by scrutinizing the actual state of its art. This part of the review is entirely dedicated to cellulose, by far the most probed natural substrate, where publications dealing with both chemical and physical treatments aimed at inducing a substantial increase in the hydrophobic character of the surface are critically examined. Furthermore, this initiative constitutes an attempt to emphasize the relevance of this topic within the broader context of the elaboration of novel materials based on renewable resources as a viable alternative to their fossil-based counterparts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Abdelmouleh M, Boufi S, Ab Salah, Belgacem MN, Gandini A (2002) Interaction of silane coupling agents with cellulose. Langmuir 18(8):3203–3208

    Article  CAS  Google Scholar 

  • Abdelmouleh M, Boufi S, Belgacem MN, Duarte AP, Salah AB, Gandini A (2004) Modification of cellulosic fibres with functionalised silanes: development of surface properties. Int J Adhes Adhes 24(1):43–54

    Article  CAS  Google Scholar 

  • Balu B, Breedveld V, Hess DW (2008) Fabrication of “roll-off” and “sticky” superhydrophobic cellulose surfaces via plasma processing. Langmuir 24(9):4785–4790

    Article  CAS  Google Scholar 

  • Barni R, Zanini S, Beretta D, Riccardi C (2007) Experimental study of hydrophobic/hydrophilic transition in SF6 plasma interaction with polymer surfaces. Eur Phys J Appl Phys 38(3):263–268

    Article  CAS  Google Scholar 

  • Bayer IS, Steele A, Martorana PJ, Loth E, Miller L (2009) Superhydrophobic cellulose-based bionanocomposite films from Pickering emulsions. Appl Phys Lett 94(16):163902

    Article  Google Scholar 

  • Belgacem MN, Gandini A (2005) The surface modification of cellulose fibres for use as reinforcing elements in composite materials. Compos Interface 12(1–2):41–75

    Article  CAS  Google Scholar 

  • Belgacem MN, Gandini A (2008) Surface modification of cellulose fibres. In: Belgacem MN, Gandini A (eds) Monomers, polymers and composites from renewable resources, 1st edn. Elsevier, Amsterdam, pp 385–400

    Google Scholar 

  • Belgacem MN, Gandini A (2009) Natural fibre-surface modification and characterisation. In: Sabu T, Pothan L (eds) Natural fibre reinforced polymer composites: from macro to nanoscale. Old City Publishing, Philadelphia, pp 14–46

    Google Scholar 

  • Berlioz S, SM- Boisseau, Nishiyama Y, Heux L (2009) Gas-phase surface esterification of cellulose microfibrils and whiskers. Biomacromolecules 10:2144–2151

    Article  CAS  Google Scholar 

  • Boufi S, Belgacem MN (2006) Modified cellulose fibres for adsorption of dissolved organic solutes. Cellulose 13(1):81–94

    Article  CAS  Google Scholar 

  • Boufi S, Gandini A (2001) Formation of polymeric films on cellulosic surfaces by admicellar polymerization. Cellulose 8(4):303–312

    Article  CAS  Google Scholar 

  • Bourbonnais R, Marchessault RH (2010) Application of polyhydroxyalkanoate granules for sizing of paper. Biomacromolecules 11(4):989–993

    Article  CAS  Google Scholar 

  • Bras J, Vaca-Garcia C, Borredon ME, Glasser W (2007) Oxygen and water vapor permeability of fully substituted long chain cellulose esters (LCCE). Cellulose 14(4):367–374

    Article  CAS  Google Scholar 

  • Butler LG (1975) Enzyme immobilization by adsorption on hydrophobic derivatives of cellulose and other hydrophilic materials. Arch Biochem Biophys 171(2):645–650

    Article  CAS  Google Scholar 

  • Castellano M, Gandini A, Fabbri P, Belgacem MN (2004) Modification of cellulose fibres with organosilanes: under what conditions does coupling occur? J Colloid Interface Sci 273(2):505–511

    Article  CAS  Google Scholar 

  • Crepy L, Chaveriat L, Banoub J, Martin P, Joly N (2009) Synthesis of cellulose fatty esters as plastics-influence of the degree of substitution and the fatty chain length on mechanical properties. ChemSusChem 2(2):165–170

    Article  CAS  Google Scholar 

  • Cunha AG, Freire CSR, Silvestre AJD, Neto CP, Gandini A (2006) Reversible hydrophobization and lipophobization of cellulose fibers via trifluoroacetylation. J Colloid Interface Sci 301(1):333–336

    Article  CAS  Google Scholar 

  • Cunha AG, Freire CSR, Silvestre AJD, Neto CP, Gandini A, Orblin E, Fardim P (2007a) Characterization and evaluation of the hydrolytic stability of trifluoroacetylated cellulose fibers. J Colloid Interface Sci 316(2):360–366

    Article  CAS  Google Scholar 

  • Cunha AG, Freire CSR, Silvestre AJD, Neto CP, Gandini A, Orblin E, Fardim P (2007b) Highly hydrophobic biopolymers prepared by the surface pentafluorobenzoylation of cellulose substrates. Biomacromolecules 8(4):1347–1352

    Article  CAS  Google Scholar 

  • Cunha AG, Freire CSR, Silvestre AJD, Neto CP, Gandini A, Orblin E, Fardim P (2007c) Bi-phobic cellulose fibers derivatives via surface trifluoropropanoylation. Langmuir 23(21):10801–10806

    Article  CAS  Google Scholar 

  • Cunha AG, Freire CSR, Silvestre AJD, Neto CP, Gandini A (2010a) Preparation and characterization of novel highly omniphobic cellulose fibers organic–inorganic hybrid materials. Carbohydr Polym 80(4):1048–1056

    Article  CAS  Google Scholar 

  • Cunha AG, Freire C, Silvestre A, Neto CP, Gandini A, Belgacem MN, Chaussy D, Beneventi D (2010b) Preparation of highly hydrophobic and lipophobic cellulose fibers by a straightforward gas–solid reaction. J Colloid Interface Sci 344(2):588–595

    Article  CAS  Google Scholar 

  • Cunha AG, Freire C, Silvestre A, Neto CP, Gandini A (2010c) unpublished results

  • Dankovich TA, Hsieh Y-L (2007) Surface modification of cellulose with plant triglycerides for hydrophobicity. Cellulose 14(5):469–480

    Article  CAS  Google Scholar 

  • Daoud WA, Xin JH, Tao X (2004) Superhydrophobic silica nanocomposite coating by a low-temperature process. J Am Ceram Soc 87(9):1782–1784

    Article  CAS  Google Scholar 

  • Daoud WA, Xin JH, Zhang YH, Mak CL (2006) Pulsed laser deposition of superhydrophobic thin teflon films on cellulosic fibers. Thin Solid Films 515:835–837

    Article  CAS  Google Scholar 

  • Dixon J, Butler LG (1977) Utilization of hydrophobic esters of cellulose for enzyme immobilization. Fed Proc 36(3):864

    Google Scholar 

  • Dixon J, Andrews P, Butler LG (1979) Hydrophobic esters of cellulose-properties and applications in biochemical technology. Biotechnol Bioeng 21(11):2113–2123

    Article  CAS  Google Scholar 

  • Erasmus E, Barkhuysen FA (2009) Superhydrophobic cotton by fluorosilane modification. Indian J Fibre Text Res 34:377–379

    CAS  Google Scholar 

  • Fadeev AY, McCarthy TJ (2000) Self-assembly is not the only reaction possible between alkyltrichlorosilanes and surfaces: monomolecular and oligomeric covalently attached layers of dichloro-and trichloroalkylsilanes on silicon. Langmuir 16(18):7268–7274

    Article  CAS  Google Scholar 

  • Feng L, Li S, Li Y, Li H, Zhang L, Zhai J, Song Y, Liu B, Jiang L, Zhu D (2002) Super-hydrophobic surfaces: from natural to artificial. Adv Mater 14(24):1857–1860

    Article  CAS  Google Scholar 

  • Fogg G (1944) Diurnal fluctuation in a physical property of leaf cuticle. Nature 154:515

    Article  Google Scholar 

  • Freire CSR, Silvestre AJD, Neto CP, Belgacem MN, Gandini A (2006) Controlled heterogeneous modification of cellulose fibers with fatty acids: effect of reaction conditions on the extent of esterification and fiber properties. J Appl Polym Sci 100(2):1093–1102

    Article  CAS  Google Scholar 

  • Gaiolas C, Costa AP, Nunes M, Silva MJS, Belgacem MN (2008) Grafting of paper by silane coupling agents using cold-plasma discharge. Plasma Process Polym 5:444–452

    Article  CAS  Google Scholar 

  • Gaiolas C, Belgacem MN, Silva L, Thielemans W, Costa AP, Nunes M, Silva MJS (2009) Green chemicals and process to graft cellulose fibers. J Colloid Interface Sci 330(2):298–302

    Article  CAS  Google Scholar 

  • Gandini A, Belgacem MN (2008) The state of the art. In: Belgacem MN, Gandini A (eds) Monomers, polymers and composites from renewable resources, 1st edn. Elsevier, Amsterdam, pp 1–16

    Google Scholar 

  • Gao L, McCarthy TJ (2009) Wetting 101°. Langmuir 25(24):14105–14115

    Article  CAS  Google Scholar 

  • Gao L, McCarthy TJ, Zhang X (2009) Wetting and superhydrophobicity. Langmuir 25(24):14100–14104

    Article  CAS  Google Scholar 

  • Gess JM, Rende DS (2005) Alkenyl succinic anhydride (ASA). Tappi J 4(9):25–30

    CAS  Google Scholar 

  • Gonçalves G, Marques PAAP, Pinto RJB, Trindade T, Neto CP (2009) Surface modification of cellulosic fibres for multi-purpose TiO2 based nanocomposites. Compos Sci Technol 69(7–8):1051–1056

    Article  Google Scholar 

  • Gonçalves G, Marques PAAP, Trindade T, Neto CP, Gandini A (2008) Superhydrophobic cellulose nanocomposites. J Colloid Interface Sci 324(1–2):42–46

    Article  Google Scholar 

  • Gonzalez AV, Uc JMC, Olayo R, Franco PJH (1999a) Effect of fiber surface treatment on the fiber-matrix bond strength of natural fiber reinforced composites. Compos B 30:309–320

    Article  Google Scholar 

  • Gonzalez AV, Uc JMC, Olayo R, Franco PJH (1999b) Chemical modification of henequén fibers with an organosilane coupling agent. Compos B 30:321–331

    Article  Google Scholar 

  • Habibi Y, Lucia LA, Rojas OJ (2010) Cellulose nanocrystals: chemistry, self-assembly, and applications. Chem Rev. doi: 10.1021/cr900339w

  • Heinze T, Petzold K (2008) Cellulose chemistry: novel products and synthesis paths. In: Belgacem MN, Gandini A (eds) Monomers, polymers and composites from renewable resources, 1st edn. Elsevier, Amsterdam, pp 343–368

    Google Scholar 

  • Hyde JF (1948) Method of rendering glass water repellent. U.S. Patent 2439689:3

  • Janoobi M, Harun J, Mathew AP, Hussein MZB, Oksman K (2010) Preparation of cellulose nanofibers with hydrophobic surface characteristics. Cellulose 17(2):299–307

    Article  Google Scholar 

  • Jantas R, Górna K (2003) Antibacterial finishing of cotton fabrics. Fibres Text East Eur 14(1):88–91

    Google Scholar 

  • Kong Y, Lin X, Wu YL, Chen J, Xu JP (1992) Plasma polymerization of octafluorocyclobutane and hydrophobic microporous composite membranes for membrane distillation. J Appl Polym Sci 46(2):191–199

    Article  CAS  Google Scholar 

  • Krässig HA (1993) Cellulose: structure, accessibility and reactivity, 1st edn. Gordon and Breach Science Publishers, Amsterdam

    Google Scholar 

  • Li S, Xie H, Zhang S, Wang X (2007) Facile transformation of hydrophilic cellulose into superhydrophobic cellulose. Chem Commun 4857–4859

  • Li S, Zhang S, Wang X (2008) Fabrication of superhydrophobic cellulose-based materials through a solution-immersion process. Langmuir 24:5585–5590

    Article  CAS  Google Scholar 

  • Li S, Wei Y, Huang J (2010a) Facile fabrication of superhydrophobic cellulose materials by a nanocoating approach. Chem Lett 39(1):20–21

    Article  Google Scholar 

  • Li G, Wang H, Zheng H, Bai R (2010b) A facile approach for the fabrication of highly stable superhydrophobic cotton fabric with multi-walled carbon nanotubes–azide polymer composites. Langmuir. doi:10.1021/la904337z

  • Lindstrom T, Larsson PT (2008) Alkyl ketene dimer (AKD) sizing—a review. Nord Pulp Pap Res J 23(2):202–209

    Article  Google Scholar 

  • Ly B, Belgacem MN, Bras J, Salon MCB (2009) Grafting of cellulose by fluorine-bearing silane coupling agents. Mater Sci Eng C 30(3):343–347

    Article  Google Scholar 

  • Ly EhB, Bras J, Sadocco P, Belgacem MN, Dufresne A, Thielemans W (2010) Surface functionalization of cellulose by grafting oligoether chains. Mater Chem Phys 120(2–3):438–445

    Article  CAS  Google Scholar 

  • Marsh JT (1942) An introduction to the chemistry of cellulose, 2nd edn. Chapman & Hall, London

    Google Scholar 

  • Matuana LM, Balatinecz JJ, Park CB, Sodhi RNS (1999) X-ray photoelectron spectroscopy study of silane-treated newsprint-fibers. Wood Sci Technol 33(4):259–270

    Article  CAS  Google Scholar 

  • Mukhopadhyay SM, Joshi P, Datta S, Zhao JG, France P (2002) Plasma assisted hydrophobic coatings on porous materials: influence of plasma parameters. J Phys D Appl Phys 35:1927–1933

    Article  CAS  Google Scholar 

  • Navarro F, Dávalos F, Denes F, Cruz LE, Young RA, Ramos J (2003) Highly hydrophobic sisal chemithermomechanical pulp (CTMP) paper by fluorotrimethylsilane plasma treatment. Cellulose 10(4):411–424

    Article  CAS  Google Scholar 

  • Nyström D, Lindqvist J, Östmark E, Hult A, Malmström E (2006) Superhydrophobic bio-fibre surfaces via tailored grafting architecture. Chem Commun 34:3594–3596

    Article  Google Scholar 

  • Nyström D, Lindqvist J, Östmark E, Antoni P, Carlmark A, Hult A, Malmström E (2009) Superhydrophobic and self-cleaning bio-fiber surfaces via ATRP and subsequent postfunctionalization. ACS Appl Mater Inter 1(4):816–823

    Article  Google Scholar 

  • Ogawa T, Ding B, Sone Y, Shiratori S (2007) Super-hydrophobic surfaces of layer-by-layer structured film-coated electrospun nanofibrous membranes. Nanotechnology 18(16):165607

    Article  Google Scholar 

  • Ostenson M, Järund H, Toriz G, Gatenholm P (2006) Determination of surface functional groups in lignocellulosic materials by chemical derivatization and ESCA analysis. Cellulose 13(2):157–170

    Article  Google Scholar 

  • Pagliaro M, Ciriminna R (2005) New fluorinated functional materials. J Mater Chem 15(47):4981–4991

    Article  CAS  Google Scholar 

  • Paquet O, Krouit M, Bras J, Thielemans W, Belgacem MN (2010) Surface modification of cellulose by PCL grafts. Acta Mater 58(3):792–801

    Article  CAS  Google Scholar 

  • Park B-D, Wi SG, Lee KH, Singh AP, Yoon T-H, Kim YS (2004) X-ray photoelectron spectroscopy of rice husk surface modified with maleated polypropylene and silane. Biomass Bioenerg 27(4):353–363

    Article  CAS  Google Scholar 

  • Pasquini D, Teixeira EM, Curvelo AAS, Belgacem MN, Dufresne A (2008) Surface esterification of cellulose fibres: processing and characterisation of low-density polyethylene/cellulose fibres composites. Compos Sci Technol 68(1):193–201

    Article  CAS  Google Scholar 

  • Peydecastaing J, Girardeau S, Vaca-Garcia C, Borredon ME (2006) Long chain cellulose esters with very low DS obtained with non-acidic catalysts. Cellulose 13(1):95–103

    Article  CAS  Google Scholar 

  • Pickering K, Abdalla A, Ji C, McDonald AG, Franich RA (2003) The effect of silane coupling agents on radiata pine fibre for use in thermoplastic matrix composites. Compos A 34(10):915–926

    Article  Google Scholar 

  • Pothan L, Bellman C, Kailas L, Thomas S (2002) Influence of chemical treatments on the electrokinetic properties of cellulose fibres. J Adhes Sci Technol 16(2):157–178

    Article  CAS  Google Scholar 

  • Ramesh HP, Tharanathan RN (2003) Carbohydrates—the renewable raw materials of high biotechnological value. Crit Rev Biotechnol 23(2):149–173

    Article  CAS  Google Scholar 

  • Redondo SUA, Radovanovic E, Gonçalves MC, Yoshida IVP (2002) Eucalyptus kraft pulp fibers as an alternative reinforcement of silicone composites. I. Characterization and chemical modification of Eucalyptus fibers with organosilane coupling agent. J Appl Polym Sci 85(12):2573–2579

    Article  CAS  Google Scholar 

  • Roberts JC (1996) Paper chemistry, 2nd edn. Chapman & Hall, London

    Google Scholar 

  • Sahin HT (2007) RF-CF4 plasma surface modification of paper: chemical evaluation of two sidedness with XPS/ATR-FTIR. Appl Surf Sci 253(9):4367–4373

    Article  CAS  Google Scholar 

  • Sahin HT, Manolache S, Young RA, Denes F (2002) Surface fluorination of paper in CF4-RF plasma environments. Cellulose 9(2):171–181

    Article  CAS  Google Scholar 

  • Sarkar MK, He F, Fan J (2010) Differential superhydrophobicity and hydrophilicity on a thin cellulose layer. Thin Solid Films 518:5033–5039

    Article  CAS  Google Scholar 

  • Siró I, Plackett D (2010) Microfibrillated cellulose and new nanocomposite materials: a review. Cellulose. doi: 10.1007/s10570-010-9405-y

  • Sreekala M, Thomas S (2003) Effect of fibre surface modification on water-sorption characteristics of oil palm fibres. Compos Sci Technol 63(6):861–869

    Article  CAS  Google Scholar 

  • Sun T, Feng L, Gao X, Jiang L (2005) Bioinspired surfaces with special wettability. Acc Chem Res 38(8):644–652

    Article  CAS  Google Scholar 

  • Tang W, Huang Y, Meng W, Qing F-L (2010) Synthesis of fluorinated hyperbranched polymers capable as highly hydrophobic and oleophobic coating materials. Eur Polym J 46(3):506–518

    Article  CAS  Google Scholar 

  • Tomšič B, Simončič B, Orel B, Černe L, Tavčer PF, Zorko M, Jerman I, Vilčnik A, Kovač J (2008) Sol-gel coating of cellulose fibres with antimicrobial and repellent properties. J Sol Gel Sci Technol 47(1):44–57

    Article  Google Scholar 

  • Vilčnik A, Jerman I, Vuk AŠ, Koželj M, Orel B, Tomšič B, Simončič B, Kovač J (2009) Structural properties and antibacterial effects of hydrophobic and oleophobic sol-gel coatings for cotton fabrics. Langmuir 25(10):5869–5880

    Article  Google Scholar 

  • Vince J, Orel B, Vilčnik A, Fir M, Vuk AŠ, Jovanovski V, Simončič B (2006) Structural and water-repellent properties of a urea/poly(dimethylsiloxane) sol-gel hybrid and its bonding to cotton fabric. Langmuir 22(15):6489–6497

    Article  CAS  Google Scholar 

  • Werner O, Quan C, Turner C, Petterson B, Wågberg L (2010) Properties of superhydrophobic paper treated with rapid expansion of supercritical CO2 containing a crystallizing wax. Cellulose 17(1):187–198

    Article  CAS  Google Scholar 

  • Xu QF, Wang JN, Smith IH, Sanderson KD (2009) Superhydrophobic and transparent coatings based on removable polymeric spheres. J Mater Chem 19(5):655–660

    Article  CAS  Google Scholar 

  • Xu B, Cai Z, Wang W, Ge F (2010) Preparation of superhydrophobic cotton fabrics based on SiO2 nanoparticles and ZnO nanorod arrays with subsequent hydrophobic modification. Surf Coat Tech 204(9–10):1556–1561

    Article  CAS  Google Scholar 

  • Xue C-H, Jia S-T, Zhang J, Tian L-Q, Chen H-Z, Wang M (2008) Preparation of superhydrophobic surfaces on cotton textiles. Sci Technol Adv Mater 9:035008(7)

    Google Scholar 

  • Yang H, Deng Y (2008) Preparation and physical properties of superhydrophobic papers. J Colloid Interf Sci 325(2):588–593

    Article  CAS  Google Scholar 

  • Yuan H, Nishiyama Y, Kuga S (2005) Surface esterification of cellulose by vapor-phase treatment with trifluoroacetic anhydride. Cellulose 12:543–549

    Article  CAS  Google Scholar 

  • Zhang J, France P, Radomyselskiy A, Datta S, Zhao J, Wv Ooij (2003) Hydrophobic cotton fabric coated by a thin nanoparticulate plasma film. J Appl Polym Sci 88:1473–1481

    Article  CAS  Google Scholar 

  • Zhang H, Kannangara D, Hilder M, Ettl R, Shen W (2007) The role of vapour deposition in the hydrophobization treatment of cellulose fibres using alkyl ketene dimers and alkenyl succinic acid anhydrides. Colloid Surf A 297(1–3):203–210

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessandro Gandini.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cunha, A.G., Gandini, A. Turning polysaccharides into hydrophobic materials: a critical review. Part 1. Cellulose. Cellulose 17, 875–889 (2010). https://doi.org/10.1007/s10570-010-9434-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-010-9434-6

Keywords

Navigation