Skip to main content
Log in

Effects of polymer concentration and coagulation temperature on the properties of regenerated cellulose films prepared from LiOH/urea solution

  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Aqueous 5 wt% LiOH/12 wt% urea solution pre-cooled to −12 °C has a more powerful ability to dissolve cellulose compared to that of NaOH/urea and NaOH/thiourea solution system. The influences of the cellulose concentration and coagulation temperature on the structure, pore size and mechanical properties of the cellulose films prepared from LiOH/urea system were investigated. The cellulose films exhibited good mechanical properties either at wet or dry state and their pore size and water permeability at wet state can be controlled by changing the cellulose concentration or coagulation temperature. With a decrease of the coagulation temperature, the mechanical properties and optical transmittance of the cellulose films enhanced, as a result of the formation of relative smaller pore size and denser structures. This work provided a promising way to prepare cellulose films with different pore sizes at wet state and good physical properties at dry state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Cai J, Zhang L (2005) Rapid dissolution of cellulose in LiOH/urea and NaOH/urea aqueous solution. Macromol Biosci 5:539–548. doi:10.1002/mabi.200400222

    Article  CAS  Google Scholar 

  • Cai J, Zhang L (2006) Unique gelation behavior of cellulose in NaOH/urea aqueous solution. Biomacromolecules 7:183–189. doi:10.1021/bm0505585

    Article  CAS  Google Scholar 

  • Cai J, Liu Y, Zhang L (2006) Dilute solution properties of cellulose in LiOH/urea aqueous system. J Polym Sci Part B Polym Phys 44:3093–3101. doi:10.1002/polb.20938

    Article  CAS  Google Scholar 

  • Cai J, Zhang L, Zhou J, Qi H, Chen H, Kondo T, Chen X, Chu B (2007) Multifilament fibers based on dissolution of cellulose in NaOH/Urea aqueous solution: structure and properties. Adv Mater 19:821–825. doi:10.1002/adma.200601521

    Article  CAS  Google Scholar 

  • Clasen C, Sultanova B, Wilhelms T, Heisig P, Kulicke WM (2006) Effects of different drying processes on the material properties of bacterial cellulose films. Macromol Symp 244:48–58. doi:10.1002/masy.200651204

    Article  CAS  Google Scholar 

  • Fink HP, Weigei P, Purz HJ, Ganster J (2001) Structure formation of regenerated cellulose materials from NMMO solutions. Prog Polym Sci 26:1473–1524. doi:10.1016/S0079-6700(01)00025-9

    Article  CAS  Google Scholar 

  • Inamoto M, Miyamamoto I, Hongo T, Iwada M, Okajima K (1996) Morphological formation of the regenerated cellulose films recovered from its cuprammonium solution using various coagulants. Polym J 28:507–512. doi:10.1295/polymj.28.507

    Article  CAS  Google Scholar 

  • Isogai A, Usuda M, Kato T, Uryu T, Atalla RH (1989) Macromolecules 22:3168–3172. doi:10.1021/ma00197a045

    Article  CAS  Google Scholar 

  • Kamide K, Iijima H, Matsuda S (1993) Thermodynamics of formation of porous polymeric film by phase separation method I: nucleation and growth of nuclei. Polym J 25:1113–1131. doi:10.1295/polymj.25.1113

    Article  CAS  Google Scholar 

  • Kim J, Yun S (2006) Discovery of cellulose as a smart material. Macromolecules 39:4202–4206. doi:10.1021/ma060261e

    Article  CAS  Google Scholar 

  • Liu S, Zhou J, Zhang L, Guan J, Wang J (2006) Synthesis and alignment of iron oxide nanoparticles in a regenerated cellulose film. Macromol Rapid Commun 27:2084–2089. doi:10.1002/marc.200600543

    Article  CAS  Google Scholar 

  • Liu S, Zhang L, Zhou J, Wu R (2008) Structure and properties of cellulose/Fe2O3 nanocomposite fibers spun via an effective pathway. J Phys Chem C 112:1538–4544

    Google Scholar 

  • Mulder M (1992) Basic principles of film technology. Kluwer, Dordrecht

    Google Scholar 

  • Rabek JF (1980) Experimental methods in polymer chemistry: applications of wide-angle X-ray diffraction (WAXD) to the study of the structure of polymers. Wiley Interscience, Chichester, p 507

    Google Scholar 

  • Rogers RD, Turner MB, Spear SK, Holbrey JD (2004) Production of bioactive cellulose films reconstituted from ionic liquids. Biomacromolecules 5:1379–1384. doi:10.1021/bm049748q

    Article  Google Scholar 

  • Rosenau T, Potthast A, Sixta H, Kosma P (2001) The chemistry of side reactions and byproduct formation in the system NMMO/cellulose (Lyocell process). Prog Polym Sci 26:1763–1837. doi:10.1016/S0079-6700(01)00023-5

    Article  CAS  Google Scholar 

  • Rosenau T, Hofinger A, Potthast A, Kosma P (2003) On the conformation of the cellulose solvent N-methylmorpholine-N-oxide (NMMO) in solution. Polymer (Guildford) 44:6153–6158. doi:10.1016/S0032-3861(03)00663-3

    Article  CAS  Google Scholar 

  • Ruan D, Zhang L, Zhang Z, Xia X (2004a) Structure and properties of regenerated cellulose/tourmaline nanocrystal composite films. J Polym Sci Polym Phys 42:367–373. doi:10.1002/polb.10664

    Article  CAS  Google Scholar 

  • Ruan D, Zhang L, Mao Y, Zeng M, Li X (2004b) Microporous films prepared from cellulose in NaOH/thiourea aqueous solution. J Membr Sci 241:265–274. doi:10.1016/j.memsci.2004.05.019

    Article  CAS  Google Scholar 

  • Sang YO, Dong IY, Younsook S, Hwan CK, Hak YK, Yong SC, Won HP, Ji HY (2005) Crystalline structure analysis of cellulose treated with sodium hydroxide and carbon dioxide by means of X-ray diffraction and FTIR spectroscopy. Carbohydr Res 340:2376–2391. doi:10.1016/j.carres.2005.08.007

    Article  Google Scholar 

  • Simon J, Muller HP, Koch R, Muller V (1998) Thermoplastic and biodegradable polymers of cellulose. Polym Degrad Stabil 59:107–115. doi:10.1016/S0141-3910(97)00151-1

    Article  CAS  Google Scholar 

  • Togawa E, Kondo T (1999) Change of morphological properties in drawing water-swollen cellulose films prepared from organic solutions: a view of molecular orientation in the drawing process. J Polym Sci Polym Phys 37:451–459. doi:10.1002/(SICI)1099-0488(19990301)37:5<451::AID-POLB5>3.0.CO;2-7

    Article  CAS  Google Scholar 

  • Van de Witte PVD, Dijkstra PJ, Van de Berg JWA, Feijen J (1996) Phase separation process in polymer solutions in relation to membrane formation. J Membr Sci 117:1–31. doi:10.1016/0376-7388(96)00088-9

    Article  Google Scholar 

  • Yang G, Zhang L (1996) Regenerated cellulose microporous films by mixing cellulose cuoxam with a water soluble polymer. J Membr Sci 114:149–155. doi:10.1016/0376-7388(95)00314-2

    Article  CAS  Google Scholar 

  • Yoshihiko A, Akira M (2003) Hemodialysis film prepared from cellulose/N-methylmorpholine-N-oxide solution. II. Comparative studies on the permeation characteristics of films prepared from N-methylmorpholine-N-oxide and cuprammonium solutions. J Appl Polym Sci 89:333–339. doi:10.1002/app.12088

    Article  Google Scholar 

  • Zhou J, Zhang L, Cai J, Shu H (2002) Cellulose microporous films prepared from NaOH/urea aqueous solution. J Membr Sci 210:77–90. doi:10.1016/S0376-7388(02)00377-0

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by National Support Project for Science and Technology (2006BAF02A09), as well as by major grant of the National Natural Science Foundation of China (59933070 and 30530850), the National Natural Science Foundation of China (20874079).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lina Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, S., Zhang, L. Effects of polymer concentration and coagulation temperature on the properties of regenerated cellulose films prepared from LiOH/urea solution. Cellulose 16, 189–198 (2009). https://doi.org/10.1007/s10570-008-9268-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-008-9268-7

Keywords

Navigation