Skip to main content
Log in

Nanocomposite-based lignocellulosic fibers 1. Thermal stability of modified fibers with clay-polyelectrolyte multilayers

  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

The layer-by-layer (LbL) assembly process of creating highly structured thin films derived from layers of polyelectrolytes and nanoparticles was adopted in this study to modify the surface of lignocellulosic fibers. Aqueous dispersions of clay nanoplatelets were created with ultrasonication and characterized with dynamic light scattering and atomic force microscopy in which confirmed the presence of individual clay nanoplatelets. Film thickness of never-dried clay and poly(diallyldimethylammonium chloride) (PDDA) multilayers was studied with a quartz crystal microbalance with dissipation monitoring (QCM-D). Using identical LbL deposition parameters, a slurry of steam-exploded wood fibers was modified by alternate adsorption of PDDA and clay with multiple rinsing steps after each adsorption cycle. Zeta potential measurements were used to characterize the fiber surface charges after each adsorption step while SEM images revealed that the LbL film masked the cellulose microfibril structure. Using a thermogravimetric analyzer, LbL modified steam-exploded wood fibers were observed to attain increased thermal stability relative to the unmodified material tested in both air and nitrogen atmospheres. Significant char for the LbL clay coated steam-exploded wood suggests the multilayer film serves as a barrier creating an insulating layer to prevent further decomposition of the material. This nanotechnology may have a positive impact on the processing of lignocellulosic fibers in thermoplastic matrices, designing of paper-based overlays for building products, and modification of cellulosic fibers for textiles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Agarwal M, Lvov Y, Varahramyan K (2006) Conductive wood microfibres for smart paper through layer-by-layer nanocoating. Nanotechnology 17:5319–5325

    Article  CAS  Google Scholar 

  • Alexandre M, Dubois P (2000) Polymer-layered silicate nanocomposites: preparation, properties and uses of a new class of materials. Mater Sci Eng R 28:1–63

    Article  Google Scholar 

  • Alila S, Boufi S, Belgacem MN, Beneventi D (2005) Adsorption of a cationic surfactant onto cellulosic fibers I. Surface charge effects. Langmuir 21:8106–8113

    Article  CAS  Google Scholar 

  • Allan GG, Akagane K, Neogi AN, Reif WM, Mattila T (1970) Physical entrapment of polyelectrolytes within microporous solids: the “jack-in-the-box” effect. Nature (London, United Kingdom) 225:175–176

    Article  CAS  Google Scholar 

  • Allan GG, Reif WM (1971) Fiber surface modification. 6. Jack-in-the-box effect: new mechanism for the retention of poly(ethylenimine) and other polyelectrolytes by pulp fibers. Svensk Papperstid 74:25–31

    CAS  Google Scholar 

  • Andreasson B, Forsstroem J, Wagberg L (2005) Determination of fibre pore structure: influence of salt, pH and conventional wet strength resins. Cellulose (Dordrecht, Netherlands) 12:253–265

    CAS  Google Scholar 

  • Avellar BK, Glasser WG (1998) Steam-assisted biomass fractionation. I. Process considerations and economic evaluation. Biomass Bioenergy 14:205–218

    Article  CAS  Google Scholar 

  • Decher G (1997) Fuzzy nanoassemblies: toward layered polymeric multicomposites. Science 277:1232–1237

    Article  CAS  Google Scholar 

  • Devaux E, Rochery M, Bourbigot S (2002) Polyurethane/clay and polyurethane/POSS nanocomposites as flame retarded coating for polyester and cotton fabrics. Fire Mater 26:149–154

    Article  CAS  Google Scholar 

  • Eriksson M, Notley SM, Wagberg L (2005) The influence on paper strength properties when building multilayers of weak polyelectrolytes onto wood fibers. J Colloid Interface Sci 292:38–45

    Article  CAS  Google Scholar 

  • Giannelis EP (1996) Polymer layered silicate nanocomposites. Adv Mater (Weinheim, Germany) 8:29–35

    Article  CAS  Google Scholar 

  • Glasser WG, Taib R, Jain RK, Kander R (1999) Fiber-reinforced cellulosic thermoplastic composites. J Appl Polym Sci 73:1329–1340

    Article  CAS  Google Scholar 

  • Herdle LE, Griggs WH (1965) Partially acetylated cellulose-its properties and potential applications. Tappi 48:103A–107A

    CAS  Google Scholar 

  • Höök F, Kasemo B (2001) Variations in coupled water, viscoelastic properties, and film thickness of a mefp-1 protein film during adsorption and cross-linking: a quartz crystal microbalance with dissipation monitoring, ellipsometry, and surface plasmon resonance study. Anal Chem 73:5796–5804

    Article  CAS  Google Scholar 

  • Hunter RJ (1981) Zeta potential in colloid science: principles and applications. Academic Press, London

  • Kleinfeld ER, Ferguson GS (1994) Stepwise formation of multilayered nanostructural films from macromolecular precursors. Science (Washington, DC, United States) 265:370–373

    Article  CAS  Google Scholar 

  • Kleinfeld ER, Ferguson GS (1995) Rapid, reversible sorption of water from the vapor by a multilayered composite film: a nanostructured humidity sensor. Chem Mater 7:2327–2331

    Article  CAS  Google Scholar 

  • Kojima Y, Usuki A, Kawasumi M, Okada A, Kurauchi T, Kamigaito O (1993) Synthesis of nylon 6-clay hybrid by montmorillonite intercalated with e-caprolactam. J Polym Sci Part A Polym Chem 31:983–986

    Article  CAS  Google Scholar 

  • Kokta BV (1991) Steam-explosion pulping. In: Focher B, Marzetti A, Crescenzi V (eds) Steam explosion techniques fundamentals and industrial applications. Gordon and Breach Science Publishers, Philadelphia, pp 163–206

    Google Scholar 

  • Kotov NA, Haraszti T, Turi L, Zavala G, Geer RE, Dekany I, Fendler JH (1997) Mechanism of and defect formation in the self-assembly of polymeric polycation-montmorillonite ultrathin films. JACS 119:6821–6832

    Article  CAS  Google Scholar 

  • Laine J, Lindstrom T, Nordmark GG, Risinger G (2000) Studies on topochemical modification of cellulosic fibers. Part 1. Chemical conditions for the attachment of carboxymethyl cellulose onto fibers. Nord Pulp Pap Res J 15:520–526

    Article  CAS  Google Scholar 

  • Lingstrom R, Wagberg L, Larsson PT (2006) Formation of polyelectrolyte multilayers on fibres: influence on wettability and fibre/fibre interaction. J Colloid Interface Sci 296:396–408

    Article  CAS  Google Scholar 

  • Lloyd JA, Horne CW (1993) The determination of fiber charge and acidic groups of radiata pine pulps. Nord Pulp Pap Res J 8:48–67

    Article  CAS  Google Scholar 

  • Lu ZH, Eadula S, Zheng ZG, Xu K, Grozdits G, Lvov Y (2007) Layer-by-layer nanoparticle coatings on lignocellulose wood microfibers. Colloids Surf A 292:56–62

    Article  CAS  Google Scholar 

  • Lvov Y, Ariga K, Ichinose I, Kunitake T (1996) Formation of ultrathin multilayer and hydrated gel from montmorillonite and linear polycations. Langmuir 12:3038–3044

    Article  CAS  Google Scholar 

  • Lvov Y, Xing Q, Davis R, Renneckar S (2006a) Nano- micro- macro integration for new cellulose based materials. Abstracts, 62nd Southwest Regional Meeting of the American Chemical Society, Houston, TX, United States, October 19–22 SRM-545

  • Lvov Y, Grozdits G, Eadula S, Zheng ZG, Lu ZH (2006b) Dry and wet strength of paper—layer-by-layer nanocoating of mill broken fibers for improved paper. Nord Pulp Pap Res J 21:552–557

    Article  CAS  Google Scholar 

  • Okada A, Kawasumi M, Kurauchi T, Kamigaito O (1987) Synthesis and characterization of a nylon 6-clay hybrid. Polym Prepr (Am Chem Soc, Div Polym Chem) 28:447–448

    CAS  Google Scholar 

  • Okada A, Kawasumi M, Usuki A, Kojima Y, Kurauchi T, Kamigaito O (1990) Nylon 6-clay hybrid. Mater Res Soc Symp Proc 171:45–50

    CAS  Google Scholar 

  • Overend RP, Chornet E (1987) Fractionation of lignocellulosics by steam-aqueous pretreatments. Philos T Roy Soc A 321:523–536

    Article  CAS  Google Scholar 

  • Park HM, Lee WK, Park CY, Cho WJ, Ha CS (2003) Environmentally friendly polymer hybrids. Part I. Mechanical, thermal, and barrier properties of thermoplastic starch/clay nanocomposites. J Mater Sci 38:909–915

    Article  CAS  Google Scholar 

  • Renneckar S, Zink-Sharp A, Esker AR, Johnson RK, Glasser WG (2006) Novel methods for interfacial modification of cellulose-reinforced composites. Cellulose Nanocomposites: Processing, Characterization, and Properties, vol 938. Amer Chemical Soc, Washington, pp 78–96

  • Samaranayake G, Li XM, Glasser WG (1994) Solvent accessibility of steam exploded cellulose. Holzforschung 48:69–71

    Article  CAS  Google Scholar 

  • Sarkanen KV, Dinkler F, Stannett V (1966) The effects of polyethylenimine on some properties of pulp and paper. Tappi 49:4–9

    CAS  Google Scholar 

  • Sauerbrey GZ (1959) The use of quartz crystal oscillators for weighing thin layers and for microweighing. Zeitschrift fuer Physik 155:206–222

    Article  CAS  Google Scholar 

  • Schoenhoff M (2003) Layered polyelectrolyte complexes: physics of formation and molecular properties. J Phys Condens Matter 15:R1781–R1808

    Article  CAS  Google Scholar 

  • Sciaraffia F, Marzetti A (1991) Enhancement of wheat straw digestability by steam-explosion pretreatment. In: Focher B, Marzetti A, Crescenzi V (eds) Steam explosion techniques fundamentals and industrial applications. Gordon and Breach Science Publishers, Philadelphia, pp 365–374

    Google Scholar 

  • Shanmuganathan K, Deodhar S, Dembsey N, Fan Q, Calvert PD, Warner SB, Patra PK (2007) Flame retardancy and char microstructure of nylon-6/layered silicate nanocomposites. J Appl Polym Sci 104:1540–1550

    Article  CAS  Google Scholar 

  • Strazdins E (1995) Critical issues in applying electrokinetics to papermaking. Tappi J 78:115–119

    CAS  Google Scholar 

  • Tang ZY, Kotov NA, Magonov S, Ozturk B (2003) Nanostructured artificial nacre. Nat Mater 2:413–419

    Article  CAS  Google Scholar 

  • Usuki A, Kojima Y, Kawasumi M, Okada A, Fukushima Y, Kurauchi T, Kamigaito O (1993) Synthesis of nylon 6-clay hybrid. J Mater Res 8:1179–1184

    Article  CAS  Google Scholar 

  • Voinova MV, Rodahl M, Jonson M, Kasemo B (1999) Viscoelastic acoustic response of layered polymer films at fluid-solid interfaces: continuum mechanics approach. Phys Scr 59:391–396

    Article  CAS  Google Scholar 

  • Wagberg L, Forsberg S, Johansson A, Juntti P (2002) Engineering of fibre surface properties by application of the polyelectrolyte multilayer concept. Part I: Modification of paper strength. J Pulp Pap Sci 28:222–228

    CAS  Google Scholar 

  • White LA (2004) Preparation and thermal analysis of cotton-clay nanocomposites. J Appl Polym Sci 92:2125–2131

    Article  CAS  Google Scholar 

  • Zheng ZG, McDonald J, Khillan R, Su Y, Shutava T, Grozdits G, Lvov Y (2006) Layer-by-layer nanocoating of lignocellulose fibers for enhanced paper properties. J Nanosci Nanotechnol 6:624–632

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This project was supported by the USDA CSREES Special Grant No. 2006-06204 and the Sustainable Engineered Materials Institute, College of Natural Resources, Virginia Tech. The authors wish to thank Dr. R.M. Davis of the Chemical Engineering Department for the help and discussion with regards to the zeta potential and light scattering measurements. We also greatly acknowledge Kunimine Industries for the donation of the clay material.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Scott Renneckar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lin, Z., Renneckar, S. & Hindman, D.P. Nanocomposite-based lignocellulosic fibers 1. Thermal stability of modified fibers with clay-polyelectrolyte multilayers. Cellulose 15, 333–346 (2008). https://doi.org/10.1007/s10570-007-9188-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-007-9188-y

Keywords

Navigation