Skip to main content
Log in

Conditions for Convergent Migration of N-Planet Systems

  • Original Article
  • Published:
Celestial Mechanics and Dynamical Astronomy Aims and scope Submit manuscript

Abstract

Given an N-planet system with coplanar, low eccentricity orbits, and under the effects of an external non-conservative force, we derive necessary conditions for the orbital migration to undergo global convergent migration and allow the formation of a mean-motion resonance chain. Since the conditions are expressed in terms of the time-derivatives of the semimajor axes, the method is applicable to any non-conservative force, including disk–planet interactions and tides. Although the number of possible conditions increase exponentially with the number of bodies, the calculations may be enormously simplified adopting a tree diagram for the decision process. We deduce explicit expressions for \(N=3\) and \(N=4\) together with applications to Kepler-60 and Kepler-223 assuming a simple prescription for Type-I migration and no inner disk edge. This disk model is chosen for simplicity and to highlight the applicability of the method. We also present all the necessary steps for the implementation of an algebraic tree algorithm for the general N-planet case, and discuss possible implications for the migration history of the TOI-178 and TRAPPIST-1 systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data Availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on request.

References

  • Agol, E., Dorn, C., Grimm, S.L., Turbet, M., Ducrot, E., Delrez, L., et al.: Refining the Transit-timing and photometric analysis of TRAPPIST-1: masses, radii, densities, dynamics, and ephemerides. Planet Sci. J. 2(1), 1 (2021)

    Article  Google Scholar 

  • Almenara, J. M., Hébrard, G., Díaz, R. F., Laskar, J., Correia, A. C. M., Anderson, D. R. et al. : Photodynamical analysis of the nearly resonant planetary system WASP-148: Accurate transit-timing variations and mutual orbital inclination (2022). arXiv e-prints p. arXiv:2204.06656

  • Azzalini, A.: The Skew-Normal and Related Families. Institute of Mathematical Statistics Monographs, Cambridge University Press, Cambridge (2013)

    Book  MATH  Google Scholar 

  • Beaugé, C., Ferraz-Mello, S., Michtchenko, T.A.: Extrasolar planets in mean-motion resonance: apses alignment and asymmetric stationary solutions. Astrophys. J. 593(2), 1124–1133 (2003)

    Article  ADS  Google Scholar 

  • Borucki, W.J., Koch, D.G., Basri, G., Batalha, N., Brown, T.M., Bryson, S.T., et al.: Characteristics of planetary candidates observed by Kepler. II. Analysis of the first four months of data. Astrophys. J. 736(1), 19 (2011)

    Article  ADS  Google Scholar 

  • Charalambous, C., Martí, J.G., Beaugé, C., Ramos, X.S.: Resonance capture and dynamics of three-planet systems. Mon. Not. R. Astron. Soc. 477(1), 1414–1425 (2018)

    Article  ADS  Google Scholar 

  • Cresswell, P., Nelson, R.P.: Three-dimensional simulations of multiple protoplanets embedded in a protostellar disc. Astronom. Astrophys. 482(2), 677–690 (2008)

    Article  ADS  Google Scholar 

  • Delisle, J.B.: Analytical model of multi-planetary resonant chains and constraints on migration scenarios. Astronom. Astrophys. 605, A96 (2017)

    Article  ADS  Google Scholar 

  • Gillon, M., Jehin, E., Lederer, S.M., Delrez, L., de Wit, J., Burdanov, A., et al.: Temperate Earth-sized planets transiting a nearby ultracool dwarf star. Nature 533(7602), 221–224 (2016)

    Article  ADS  Google Scholar 

  • Gillon, M., Triaud, A.H.M.J., Demory, B.-O., Jehin, E., Agol, E., Deck, K.M., et al.: Seven temperate terrestrial planets around the nearby ultracool dwarf star TRAPPIST-1. Nature 542(7642), 456–460 (2017)

    Article  ADS  Google Scholar 

  • Goldreich, P., Schlichting, H.E.: Overstable Librations can Account for the Paucity of Mean Motion Resonances among Exoplanet Pairs. Astron. J. 147(2), 32 (2014)

    Article  ADS  Google Scholar 

  • Gomes, R.S.: The effect of nonconservative forces on resonance lock: stability and instability. Icarus 115(1), 47–59 (1995)

    Article  ADS  Google Scholar 

  • Goździewski, K., Migaszewski, C., Panichi, F., Szuszkiewicz, E.: The Laplace resonance in the Kepler-60 planetary system. Mon. Not. R. Astron. Soc. 455(1), L104–L108 (2016)

    Article  ADS  Google Scholar 

  • Grimm, S.L., Demory, B.-O., Gillon, M., Dorn, C., Agol, E., Burdanov, A., et al.: The nature of the TRAPPIST-1 exoplanets. Astronom. Astrophys. 613, A68 (2018)

    Article  Google Scholar 

  • Henrard, J.: Capture into resonance - an extension of the use of adiabatic invariants. Celest. Mech. 27(1), 3–22 (1982)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Hobson, M.J., Díaz, R.F., Delfosse, X., Astudillo-Defru, N., Boisse, I., Bouchy, F., et al.: The SOPHIE search for northern extrasolar planets. XIII. Two planets around M-dwarfs Gl617A and Gl96. Astronom. Astrophys. 618, A103 (2018)

    Article  Google Scholar 

  • Hühn, L.A., Pichierri, G., Bitsch, B., Batygin, K.: Kepler-223 resonance holds information about turbulence during the gas-disk phase. Astronom. Astrophys. 656, A115 (2021)

    Article  Google Scholar 

  • Ishitani Silva, S., Ranc, C., Bennett, D. P., Bond, I. A., Zang, W., Abe, F. et al.: MOA-2020-BLG-135Lb: a new neptune-class planet for the extended MOA-II exoplanet microlens statistical analysis (2022). arXiv e-prints p. arXiv:2204.03672

  • Jontof-Hutter, D., Ford, E.B., Rowe, J.F., Lissauer, J.J., Fabrycky, D.C., Van Laerhoven, C., et al.: Secure mass measurements from transit timing: 10 Kepler exoplanets between 3 and 8 \(\text{ M}_{{\oplus }}\) with diverse densities and incident fluxes. Astrophys. J. 820(1), 39 (2016)

    Article  ADS  Google Scholar 

  • Kemmer, J., Stock, S., Kossakowski, D., Kaminski, A., Molaverdikhani, K., Schlecker, M., et al.: Discovery of a hot, transiting, Earth-sized planet and a second temperate, non-transiting planet around the M4 dwarf GJ 3473 (TOI-488). Astronom. Astrophys. 642, A236 (2020)

    Article  Google Scholar 

  • König, P. C., Damasso, M., Hébrard, G., Naponiello, L., Cortés-Zuleta, P., Biazzo, K., Santos, N. C., et al.: A warm super-Neptune around the G-dwarf star TOI-1710 revealed with TESS, SOPHIE and HARPS-N, (2022) arXiv e-prints p. arXiv:2204.08984

  • Kossakowski, D., Espinoza, N., Brahm, R., Jordán, A., Henning, T., Rojas, F., et al.: TOI-150b and TOI-163b: two transiting hot Jupiters, one eccentric and one inflated, revealed by TESS near and at the edge of the JWST CVZ. Mon. Not. R. Astron. Soc. 490(1), 1094–1110 (2019)

    Article  ADS  Google Scholar 

  • Leleu, A., Alibert, Y., Hara, N.C., Hooton, M.J., Wilson, T.G., Robutel, P., et al.: Six transiting planets and a chain of Laplace resonances in TOI-178. Astronom. Astrophys. 649, A26 (2021)

    Article  Google Scholar 

  • Luger, R., Sestovic, M., Kruse, E., Grimm, S.L., Demory, B.-O., Agol, E., et al.: A seven-planet resonant chain in TRAPPIST-1. Nat. Astron. 1, 0129 (2017)

    Article  ADS  Google Scholar 

  • Masset, F.S.: Coorbital thermal torques on low-mass protoplanets. Mon. Not. R. Astron. Soc. 472(4), 4204–4219 (2017)

    Article  ADS  Google Scholar 

  • Mills, S.M., Fabrycky, D.C., Migaszewski, C., Ford, E.B., Petigura, E., Isaacson, H.: A resonant chain of four transiting, sub-Neptune planets. Nature 533(7604), 509–512 (2016)

    Article  ADS  Google Scholar 

  • Neishtadt, A.I.: Passage through a separatrix in a resonance problem with a slowly-varying parameter. Prikladnaia Matematika i Mekhanika 39(4), 621–632 (1975)

    ADS  MathSciNet  Google Scholar 

  • Ogihara, M., Kokubo, E., Nakano, R., Suzuki, T.K.: Rapid-then-slow migration reproduces mass distribution of TRAPPIST-1 system. Astronom. Astrophys. 658, A184 (2022)

    Article  ADS  Google Scholar 

  • Paardekooper, S.J., Baruteau, C., Kley, W.: A torque formula for non-isothermal Type I planetary migration - II. Effects of diffusion. Mon. Not. R. Astron. Soc. 410(1), 293–303 (2011)

    Article  ADS  Google Scholar 

  • Papaloizou, J.C.B.: Three body resonances in close orbiting planetary systems: tidal dissipation and orbital evolution. Int. J. Astrobiol. 14(2), 291–304 (2015)

    Article  ADS  Google Scholar 

  • Papaloizou, J.C.B., Szuszkiewicz, E.: On the migration-induced resonances in a system of two planets with masses in the Earth mass range. Mon. Not. R. Astron. Soc. 363(1), 153–176 (2005)

    Article  ADS  Google Scholar 

  • Ramos, X.S., Charalambous, C., Benítez-Llambay, P., Beaugé, C.: Planetary migration and the origin of the 2:1 and 3:2 (near)-resonant population of close-in exoplanets. Astronom. Astrophys. 602, A101 (2017)

    Article  ADS  Google Scholar 

  • Steffen, J.H., Fabrycky, D.C., Agol, E., Ford, E.B., Morehead, R.C., Cochran, W.D., et al.: Transit timing observations from Kepler - VII. Confirmation of 27 planets in 13 multiplanet systems via transit timing variations and orbital stability. Mon. Not. R. Astron. Soc. 428(2), 1077–1087 (2013)

    Article  ADS  Google Scholar 

  • Tamayo, D., Rein, H., Petrovich, C., Murray, N.: Convergent migration renders TRAPPIST-1 long-lived. Astrophys. J. Lett 840(2), L19 (2017)

    Article  ADS  Google Scholar 

  • Tanaka, H., Takeuchi, T., Ward, W.R.: Three-dimensional interaction between a planet and an isothermal gaseous disk. I. Corotation and Lindblad torques and planet migration. Astrophys. J. 565(2), 1257–1274 (2002)

    Article  ADS  Google Scholar 

  • Terquem, C., Papaloizou, J.C.B.: Migration and the formation of systems of hot super-earths and Neptunes. Astrophys. J. 654(2), 1110–1120 (2007)

    Article  ADS  Google Scholar 

  • Terquem, C., Papaloizou, J.C.B.: First-order mean motion resonances in two-planet systems: general analysis and observed systems. Mon. Not. R. Astron. Soc. 482(1), 530–549 (2019)

    Article  ADS  Google Scholar 

  • Teyssandier, J., Libert, A.S., Agol, E.: TRAPPIST-1: Dynamical analysis of the transit-timing variations and origin of the resonant chain. Astronom. Astrophys. 658, A170 (2022)

    Article  Google Scholar 

Download references

Acknowledgements

Most of the calculations necessary for this work were carried out with the computing facilities of IATE/UNC as well as in the High Performance Computing Center of the Universidad Nacional de Córdoba (CCAD-UNC). This research was funded by CONICET, Secyt/UNC and FONCYT.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Beaugé.

Ethics declarations

Conflicts of interest

The authors have no conflict of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Beaugé, C., Cerioni, M. Conditions for Convergent Migration of N-Planet Systems. Celest Mech Dyn Astron 134, 57 (2022). https://doi.org/10.1007/s10569-022-10113-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10569-022-10113-4

Keywords

Navigation